期刊文献+

人工智能在肾细胞癌诊断中的研究现状 被引量:5

Research status of artificial intelligence in the diagnosis of renal cell carcinoma
原文传递
导出
摘要 目前,人工智能在肾癌诊断研究中的应用正处于起步阶段,影像学诊断的报道多于病理学,主要是关于人工智能通过CT检查鉴别肾肿瘤的良恶性和预测肾细胞癌的病理类型,但尚未涉足MRI检查,而病理学诊断主要是通过人工智能对细胞核进行分级。未来,人工智能在肾细胞癌诊断方面的研究有很大的发展潜力,有待进一步深入研究。 At present,the application of artificial intelligence in the diagnosis of renal cell carcinoma(RCC)is still at an early stage.There were more reports of imaging diagnosis than pathology.Studies of imaging diagnosis mainly focused on using artificial intelligence to identify benign and malignant renal tumors and predict pathological types of RCC by computed tomography.However,there were no reports of artificial intelligence in diagnosing RCC by magnetic resonance imaging.Studies of pathological diagnosis were mainly about the classification of the nucleus.In the future,artificial intelligence has great development potential in the diagnosis of RCC,and further research is needed.
作者 江卫星 郑闪 寿建忠 马建辉 Jiang Weixing;Zheng Shan;Shou Jianzhong;Ma Jianhui(Department of Urology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100021,China;Department of pathology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100021,China)
出处 《中华泌尿外科杂志》 CAS CSCD 北大核心 2020年第3期233-236,共4页 Chinese Journal of Urology
基金 中国医学科学院医学与健康科技创新工程(2017-I2M-2-003)。
关键词 肾细胞 人工智能 机器学习 深度学习 Carcinoma renal cell Artificial intelligence Machine learning Deep learning
  • 相关文献

参考文献2

二级参考文献18

  • 1李鸣,那彦群.不同水平前列腺特异抗原的前列腺癌诊断率[J].中华医学杂志,2008,88(1):16-18. 被引量:56
  • 2Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [ J]. CA Cancer J Clin,2015,65 : 87-108.
  • 3Futterer JJ, Verma S, Hambrock T, et al. High-risk prostatecancer: value of muhi-modality 3T MRI-guided biopsies after previous negative biopsies [ J]. Abdom Imaging, 2012,37 : 892- 896.
  • 4Loch T, Leuschner I, Gcnberg C, et al. Artificial neural network analysis ( ANNA ) of prostatic transreetal ultrasound [ J ]. Prostate, 1999,39 : 198-204.
  • 5Walsh PC. 2008 Whitmore Lecture: Radical prostatectomy--where we were and where we are going [ J ]- Urol Oncol,2009,27 : 246- 250.
  • 6Jiang X, Zhu S, Feng G, et al. Is an initial saturation prostate biopsy scheme better than an extended scheme for detection of prostate cancer? A systematic review and meta-analysis [ J ] Eur Urol,2013,63 : 1031-1039.
  • 7Halpern EJ, Verkh L, Forsberg F, et al. Initial experience with contrast-enhanced sonography of the prostate [ J ] AJR Am J Roentgeno1,2000,174 : 1575 -1580.
  • 8Brock M, Eggert T, Palisaar 1LI, et al. Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer [ J]. JUrol, 2013' 189 : 93-98.
  • 9Govorov A, Pushkar D, Kovylina M, et al. 350 Validation of histoscanning system to detect and characterize prostate cancer [J]. Eur Urol Suppl,2013,12: e350.
  • 10Hsu C, Spahn M,Briganti A,et al. 911 Oncological outcome and prognostic factors for locally advanced prostate cancer treated with radical prostateetomy: an EMPaCT study [ J]. Euro Urol Suppl, 2013,12: e911.

共引文献21

同被引文献21

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部