期刊文献+

质子交换膜燃料电池冷启动时阴极催化层内多场耦合的介孔尺度模型 被引量:1

A Mesoscopic Pore-Scale Model of Multi-Disciplinary Coupling in PEMFC Cathode Catalyst Layer during Cold Start
下载PDF
导出
摘要 为详细解析质子交换膜燃料电池(PEMFC)零下温度启动过程,建立了电池冷启动时多场耦合过程的介孔尺度数值模型。几何模型基于随机网格法(SGM)重建的催化层介孔结构,数学模型描述了物质传输、电荷传输、电化学反应和汽-冰相变过程。数值分析了电池冷启动过程中催化层内冰的生成和演化,重点探讨了冰的生成及形貌对电池性能的影响,推导出电化学活性反应面积与结冰量的关系式。 In order to have a deep understanding of the cold start of proton exchange membrane fuel cell(PEMFC)from sub-zero temperature,a mesoscopic pore-scale model of multi-disciplinary coupling in cathode catalyst layer(CL)was established.The geometry model is a 3-dimensional pore-structure of CL reconstructed by the random grid method(SGM),and the species transport,charge transport,electrochemical reactions and phase change of water were described by mathematical model.The formation and evolution of ice in CL during cold start were simulated and analyzed,the effects of ice formation and morphology on battery performance were discussed,and a correlation of the electrochemical active reaction area(ECA)to the amount of ice formation in CL was derived from the simulation results.
作者 廖梓豪 魏琳 索振邦 石伟玉 蒋方明 LIAO Zi-hao;WEI Lin;SUO Zhen-bang;SHI Wei-yu;JIANG Fang-ming(Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China;CAS Key Laboratory of Renewable Energy,Guangzhou 510640,China;Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development,Guangzhou 510640,China;University of Chinese Academy of Sciences,Beijing 100049,China;Shanghai Hydrogen Propulsion Technology Co.,Ltd.,Shanghai 201800,China)
出处 《新能源进展》 2020年第2期81-90,共10页 Advances in New and Renewable Energy
基金 上海汽车工业科技发展基金会项目(1706) 广东省科技发展专项资金(前沿与关键技术创新方向-重大科技专项)项目(2017B01012003) 广东省自然科学基金项目(2016A030313172) 广东省自然科学基金-重大基础研究培育项目(2015A030308019).
关键词 燃料电池 数值模拟 介尺度 催化层 冷启动 fuel cells numerical simulation mesoscale catalyst layer cold start
  • 相关文献

参考文献1

二级参考文献38

  • 1Wang, C. W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154, A1035.
  • 2Du, W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.; Wei, S. Y. Int. J. Heat Mass Transfer2010, 53, 3552. doi: 10.1016/j. iiheatmasstransfer.2010.04.017.
  • 3Gupta, A.; Seo, J. H.; Zhang, X. C.; Du, W. B.; Sastry, A. M.; Wei, S. Y. J. Electrochem. Soc. 2011, 158, A487.
  • 4Spanne, P.; Thovert, J. F.; Jacquin, C. J. Phys. Rev. Lett. 1994, 73, 2001. doi: 10.1103/PhysRevLett.73.2001.
  • 5Yoshizawa, N.; Tanaike, O.; Hatori, H. Carbon 2006, 44, 2558. doi: 10.1016/j.carbon.2006.05.041.
  • 6Groeber, M. A.; Haley, B. K.; Uchic, M. D. Mater Charact. 2006, 57, 259. doi: 10.1016/j.matchar.2006.01.019.
  • 7Shearing, P. R.; Golbert, J.; Chater, R. J. Chem. Eng. Sci. 2009, 64, 3928. doi: 10.1016/j.ces.2009.05.038.
  • 8Yuan, B. K.; Chen, P. C.; Zhang, J.; Cheng, Z. H.; Qiu, X. H.; Wang, C. Acta Phys. -Chim. Sin. 2013, 29, 1370.
  • 9Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29, 293.
  • 10Quiblier, J. J. Colloid Interface Sci. 1984, 98, 84.

共引文献3

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部