摘要
文章基于TensorFLow设计了个性化推荐系统,系统循环神经网络模块可就时间序列构建模型,充分挖掘用户不断变化的兴趣爱好,而系统训练模块可就TensorFLow结构通过数据流图构建模型,基于Spark集群并行训练模型,从而调节多超参数。通过系统实现证明,此系统可实现多超参数调节,在很大程度上节省训练时间,且能显著降低误差率,动态化效果良好,满足了用户的多元化与个性化需求,值得大力推广与广泛应用。
In this paper,a personalized recommendation system is designed based on TensorFLow.The system cyclic neural network module can construct a model for time series and fully mine the changing interests of users,while the system training module can construct a model through data flow graph for TensorFLow structure and a parallel training model based on Spark cluster,so as to adjust multiple superparameters.Through the implementation of the system,it is proved that the system can realize multi-superparameter adjustment,greatly save training time,and can significantly reduce the error rate,and the dynamic effect is good,which meets the diversified and personalized needs of users,and is worth popularizing and widely used.
作者
杨慧娟
YANG Hui-juan(Department of Management Engineering,Yulin Vocational and Technical College,Yulin Shaanxi 719000,China)
出处
《粘接》
CAS
2020年第2期166-169,共4页
Adhesion
基金
陕西省教育厅科研计划资助项目(19JK1013)。