期刊文献+

基于机器学习的移动自组网MAC协议研究综述 被引量:4

A Survey on MAC Protocol of Mobile Ad Hoc Network Based on Machine Learning
下载PDF
导出
摘要 MAC协议设计是移动自组网的一项重要关键技术,主要通过有效的多节点协商机制,实现各节点对空间、时间、频率等有限资源的合理共享,完成各节点的随机接入和资源分配功能。随机接入和资源分配问题通常可用最优化和马尔科夫决策问题表述,机器学习可成为提升移动自组网MAC协议性能的有力手段之一。该综述在分析机器学习和移动自组网MAC协议特点基础上,结合现有研究成果,介绍了基于机器学习的关键技术原理和仿真性能,展望了未来研究方向。现有研究成果表明,基于机器学习的MAC协议设计性能改善显著。 MAC protocol is a key technology for mobile ad hoc networks.It mainly implements reasonable sharing of limited resources such as space,time,and frequency for various nodes through an effective multi-node negotiation mechanism,and achieves random access and resource allocation of each node.Random access and resource allocation problems can usually be modeled by optimization and Markov decision problems.Machine learning can become one of the powerful means to improve the performance of MAC protocols in mobile ad hoc networks.Based on the analysis of the characteristics of machine learning and mobile ad hoc network MAC protocols,this paper introduces the key technical principles and simulation performance of machine learning based on existing research results,and looks forward to future research directions.Existing research show that the performance of MAC protocols based on machine learning has improved significantly.
作者 郑博文 肖卓 刘丽哲 梁晨 ZHENG Bowen;XIAO Zhuo;LIU Lizhe;LIANG Chen(The 54th Research Institute of CETC,Shijiazhuang 050081,China;Unit 96764,PLA,Luoyang 471000,China)
出处 《无线电通信技术》 2020年第3期273-279,共7页 Radio Communications Technology
基金 国家部委基金资助项目。
关键词 机器学习 自组网 MAC协议 machine learning ad hoc network MAC protocol
  • 相关文献

参考文献1

二级参考文献12

  • 1Peng Y, Soong B H, Wang L. Broadcast scheduling in packet radio networks using mixed tabu-greedy algorithm. Electronics Letters, 2004, 40 : 375-376.
  • 2Baker D J, Ephremides A. The architectural organization of a mobile radio network via a distributed algorithm. IEEE Trans. on Comm., 1981, 29: 1694-1701.
  • 3Tassiulas L, Ephremides A, Gunn J. Solving hard optimization problems arising in packet radio networks using Hopfield's net. Proc. of Conf. Info. Sci. Sys., 1989, 3:603-608.
  • 4Even S, Goldreich O, Moran S. On the Np completeness of certain network testing problems. Networks, 1984, 14: 1-24.
  • 5Funabiki N, Takefuji Y. A parallel algorithm for broad- cast scheduling problems in packet radio networks. IEEE Trans. on Comm., 1993, 41(6): 828-831.
  • 6Takefuji Y, Lee K, Aiso H. An artificial maximum neural network: a winner-take-all neuron model forcing the state of the system in a solution domain. Biological Cybernetics, 1992, 67:243-251.
  • 7Chakraborty G, Hirano Y. Genetic algorithm for broadcast scheduling in packet radio networks. IEEE World Congress on Computational Intelligence, Alaska, May, 1998: 183-188.
  • 8Wang G, Ansari N. Optimal broadcast scheduling in packet radio networks using mean field annealing. IEEE J.S.A. Comm., 1997, 15: 250-260.
  • 9Salcedo-Sanz S, Bousono-Calzo C, Figueiras. A mixed neural-genetic algorithm for the broadcast scheduling problem. IEEE Trans. on Wireless Comm., 2003, 2: 277-283.
  • 10Yeo J, Lee H, Kim S. An efficient broadcast scheduling algorithm for tdma ad-hoc networks. Computer Operations Research, 2002, 29 : 1793-1806.

共引文献4

同被引文献13

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部