期刊文献+

基于YOLO算法的行人检测方法 被引量:14

Pedestrian Detection Method Based on YOLO Algorithm
下载PDF
导出
摘要 针对复杂道路交通环境,选择YOLO(You Only Look Once)实时目标检测算法,对行人目标进行检测识别的研究。YOLO算法在目标检测的速度和精度上都取得过良好效果。首先在YOLO网络模型的基础上针对行人单类检测问题,修改分类器,并通过卷积操作改变网络最后的输出维度;其次通过对道路交通场景下采集到的样本图片进行标注,得到行人数据集;然后采用相同预训练模型在YOLOv2和YOLOv3上训练,通过优化网络参数,加速模型收敛。实验结果分析可知,基于改进的YOLOv3的行人目标检测方法更能满足实时性的要求。 In view of the complex road traffic environment,the real-time target detection algorithm YOLO was selected to carry out the research of pedestrian target detection and recognition.YOLO algorithm has achieved good results in the speed and accuracy of target detection.Firstly,based on YOLO network model,the classifier is modified to solve the single-class detection problem of pedestrians,and the final output dimension of the network is changed by convolution operation.Secondly,the pedestrian data set is obtained by marking sample images collected under road traffic scene.Then,the same pre-training model is used to train on YOLOv2 and YOLOv3,and the network parameters are optimized to accelerate the model convergence.According to the analysis of experimental results,the improved pedestrian target detection method based on YOLOv3 can better meet the real-time requirements.
作者 戴舒 汪慧兰 许晨晨 刘丹 张保俊 DAI Shu;WANG Huilan;XU Chenchen;LIU Dan;ZHANG Baojun(School of Physics and Electronic Information,Anhui Normal University,Wuhu 241000,China)
出处 《无线电通信技术》 2020年第3期360-365,共6页 Radio Communications Technology
基金 安徽省自然科学基金资助项目(1708085QF133)。
关键词 行人检测 YOLO模型 神经网络 实时检测 pedestrian detection YOLO model neural network real-time detection
  • 相关文献

参考文献3

二级参考文献66

  • 1Alex Krizhevsky, Ilya Sutskever, Geoff Hinton. Imagenet classification with deep con-volutional neural networks[J]. Advances in Neural Information Processing Systems 25, 2012:1106-1114.
  • 2DH Hubel,TN Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physi- ology(London), 1962,160 : 106-154.
  • 3K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in po- sition[J]. Biological Cybernetics, 1980, 36:193-202.
  • 4Y. I~ Cun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86( 11 ) :2278-2324.
  • 5Y. LeCun, B. Boser, J. S. Denker, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551.
  • 6Yoshua Bengio, Learning Deep Architectures for AI[J]. Machine Learning, 2009,2( 1 ) : 1-127.
  • 7Glorot X, Bordes A,Bengio, Y. Deep sparse rectifier networks[C]. Proceedings of the 14th International Conference on Artificial Intelli- gence and Statistics. JMLR W&CP Volume, 2011,15:315-323.
  • 8Yoshua Bengio, Aaron Courville, and Pascal Vincent, representation learning: A review and new rerspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, Issue No.08 - Aug. (2013 vol.35):1798-1828.
  • 9IA Yang-qing, Shelhamer Evan, Donahue Jeff, et al. caffe: convolutional architecture for Fast feature embedding[EB/OL]. 2014, arXiv preprint arXiv: 1408.5093.
  • 10Know your meme: We need to go deeper [EB/OL] [2014-12-01]. http://knowyourmeme.com/memes/we-need-to-go-deeper.

共引文献197

同被引文献88

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部