期刊文献+

两阶段动态差分智能元胞机算法 被引量:2

Two-stage dynamic differential agent cellular automata algorithm
下载PDF
导出
摘要 针对传统进化算法在求解高维度优化工程问题时存在全局搜索和局部寻优的平衡难题,提出一种基于差分进化和元胞种群拓扑结构的两阶段动态差分智能元胞机算法。通过对个体的邻居结构进行调整,实现进化种群由结构化种群过渡到非结构化种群的效果,较好地兼顾全局搜索和局部寻优之间的协同问题;同时对外部种群保留的对象进行调整及完全反馈,提高算法的收敛速度。算法将智能体机制引入元胞种群,采用两阶段的外部种群多样性维护方法,将扰动因子引入变异操作使其跳出局部最优困境。通过对WFG系列基准函数测试表明,新算法相对于其他4种典型算法能获得更好的Pareto前端和竞争性的收敛结果。 To solve the balance difficulty of global search and local optimization for solving high dimensional optimization problems by traditional evolution algorithm, a two-stage dynamic differential agent cellular algorithm based on differential evolution and cellular population topology structure was proposed. By adjusting the individual neighboring structure, the effect of evolutionary population from the structured population to the unstructured population was achieved, and the algorithm could better balance the global search and local optimization. At the same time, the adjustment and complete feedback of the left individuals of the external population improved the convergence speed of the algorithm. The algorithm introduced the agent mechanism into the cellular population, adopted the two-stage external population diversity maintenance method, and introduced a disturbance variable in the mutation operation to avoid the algorithm falling into local optimum. Tests on the WFG series of benchmark functions showed that the new algorithm could obtain a more uniform Pareto front and competitive convergence results when compared to the other four typical algorithms.
作者 王亚良 倪晨迪 曹海涛 钱其晶 金寿松 WANG Yaliang;NI Chendi;CAO Haitao;QIAN Qijing;JIN Shousong(College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第4期989-1000,共12页 Computer Integrated Manufacturing Systems
基金 浙江省自然科学基金资助项目(LY16G010013) 国家自然科学基金资助项目(71371170,71301148) 国家863计划资助项目(2015AA043002)。
关键词 动态差分 元胞机算法 多样性维护 扰动因子 多目标优化问题 dynamic difference cellular automata algorithm diversity maintenance disturbance variable multi-objective optimization problems
  • 相关文献

参考文献3

二级参考文献47

  • 1蓝艇,刘士荣,顾幸生.基于进化算法的多目标优化方法[J].控制与决策,2006,21(6):601-605. 被引量:26
  • 2CAGAN J, SHIMADA K, YIN S. A survey of computational approaches to three-dimensional layout problems[J]. Comput- er-Aided Design, 2002, 34(8):597-611.
  • 3DEB K, PRATAB A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSK-A- II [J]. IEEE Trans- actions on Evolutionary Computation, 2002, 6(2) : 182-197.
  • 4CORNED W, JERRAN N R, KNOWLES J D, et al. PESA- 1I : region-based selection in evolutionary multi-objective opti- mization[EB/OL]. [2011-11-15]. http://www, macs. hw. ac. uk/dwcorne/pesall, pdf.
  • 5BRUDARU O, POPOVICI D, COPACEANU C. Cellular ge- netic algorithm with communicating grids for assembly line balancing problems[J]. Advances in Electrical and Computer Engineering, 2010, 10(2):87-93.
  • 6ALBA E, MOLINA G. Location discovery in wireless sensor network using metaheuristics[J]. Applied Soft Computing, 2011, 11(1):1223-1240.
  • 7NEBRO A J, DURII.I.O J J, LUNA F, et al. MOCelI: a cel- lular genetic algorithm for multiobjective optimization[J]. In- ternational Journal of Intelligent Systems, 2009, 24 (7): 726-746.
  • 8CANYURT O E, HAJELA P. Cellular genetic algorithm tech- nique for the multicriterion dsign optimization[J]. Structural and Multidisciplinary Optimization, 2010, 40(1-6) : 201-214.
  • 9WU Feng, ZHOU Hao, REN Tao, et al. Combining support vector regression and cellular genetic algorithm for multi-objec- tive optimization of coal-fired utility boilers E J3. Fuel, 2009, 88(10) : 1864-1870.
  • 10KUKKONEN S, LAMPINEN J. GDE3: the third evolutionstep of generalized differential evolution[C]//Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Washington, D. C. , USA: IEEE, 2005 : 443-450.

共引文献47

同被引文献47

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部