期刊文献+

基于排列熵理论的非线性系统特征提取研究 被引量:11

Feature extraction for nonlinear systems based on permutation entropy theory
下载PDF
导出
摘要 提出一种基于排列熵及其改进理论的伪相平面法,从而可以提取非线性系统中的微弱周期信号特征。通过选择合理的时间延迟和嵌入维数,对Duffing系统的响应信号进行相空间重构,得到一次排列熵和二次排列熵。随后将位移激励、一次排列熵和二次排列熵作为数据集,组成位移激励-一次排列熵和位移激励-二次排列熵两种伪相平面。通过将这两种方法与传统的相平面法、频谱分析和排列熵、排列熵谱、二次排列熵、二次排列熵谱的提取效果进行对比,验证了该方法的合理性。研究表明该方法能够对非线性系统中的微弱周期信号特征进行提取,取得了较好效果。 A pseudo phase plane method based on permutation entropy and its improved theory was proposed to extract weak periodic signal’s features in a nonlinear system.Through choosing a reasonable time delay and embedding dimension,the phase space of a Duffing system’s response signal was reconstructed to obtain primary permutation entropy and quadratic one.Then,displacement excitation,primary permutation entropy and quadratic one were taken as data sets to form two pseudo phase planes of displacement excitation-primary permutation entropy and displacement excitation-quadratic one.The proposed method’s extracting effect was compared with those of traditional methods including phase plane method,spectral analysis,permutation entropy,permutation entropy spectrum,quadratic permutation entropy and quadratic permutation entropy spectrum to verify the rationality of the proposed method.The study showed that the proposed method can extract characteristics of weak periodic signal in nonlinear systems,and achieve better effect.
作者 武薇 申永军 杨绍普 WU Wei;SHEN Yongjun;YANG Shaopu(School of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
出处 《振动与冲击》 EI CSCD 北大核心 2020年第7期67-73,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(11772206) 河北省高等学校创新团队领军人才计划(LJRC018) 河北省高等学校高层次人才科学研究项目(GCC2014053) 河北省高层次人才资助项目(A201401001) 国家自然科学基金(U1934201) 石家庄铁道大学研究生创新项目(YC2018063)。
关键词 排列熵 伪相平面 DUFFING系统 特征提取 permutation entropy pseudo phase plane Duffing system feature extraction
  • 相关文献

参考文献6

二级参考文献96

  • 1侯荣涛,闻邦椿,周飙.基于现代非线性理论的汽轮发电机组故障诊断技术研究[J].机械工程学报,2005,41(2):142-147. 被引量:15
  • 2侯威,封国林,董文杰,李建平.利用排列熵检测近40年华北地区气温突变的研究[J].物理学报,2006,55(5):2663-2668. 被引量:44
  • 3郝成元,吴绍洪,李双成.排列熵应用于气候复杂性度量[J].地理研究,2007,26(1):46-52. 被引量:27
  • 4Driver, R.D.: Ordinary and Delay Differential Equations, Applied Mathematical Sciences 20, Springer-Verlag, New York (1977).
  • 5Faybishenko, B.: Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives. Rev. Geophys. 42, (2003).
  • 6Deng, W.H., Li, C.E, Lu, J.: Stability analysis of linear fractional differential system with multiple time-delays. Nonlinear Dynamics 45(4), 409-416 (2007).
  • 7Mehaute, A.Le, Howlett, J.: Fractal Geometries: Theory and Applications. CRC Press, Inc., Boca Raton, FL (1991).
  • 8Nigmatullin, R.R.: Fractional kinetic equations and "universal" decoupling of a memory function in mesoscale region. Physica A: Statistical Mechanics and its Applications 363(2), 282-298 (2006).
  • 9Feeny, B.F., Lin, G.: Fractional derivatives applied to phasespace reconstructions. Nonlinear Dynamics 38 (1-4) 85-99 (2004).
  • 10Abarbanel, H,D.I., Brown, R., Sidorowich, J.J., et al.: The analysis of observed chaotic data in physical systems. Reviews of Modern Physics 65(4), 1331-1392 (1993).

共引文献153

同被引文献104

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部