期刊文献+

基于改进DBN的回转支承寿命状态识别 被引量:3

Life state recognition of slewing bearing based on improved deep belief network
下载PDF
导出
摘要 为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。 In order to solve the problems of large slewing bearing,such as large background noise,weak characteristic signal,and difficulty to identify the life state of slewing bearing,an identification method of slewing bearing life state based on improved deep belief network(DBN)was proposed.DBN network has strong deep learning ability and can effectively mine the running state information of slewing bearing,which solves the problem that traditional shallow network relies too much on the effect of feature extraction and low recognition accuracy.In DBN learning and training,a new optimized learning method,Free Energy in Persistent Contrastive Divergence(FEPCD),was proposed to solve the problem of the decline of approximation and classification ability of DBN in long-term learning.Then the superiority of the proposed method was verified by using the test data of test rig.Finally,the recognition results of the improved DBN algorithm and the shallow classification algorithm were compared.The results show that the improved DBN network can reflect the life characteristics of slewing bearing more accurately than the original DBN network and shallow algorithm,and the proposed method has the characteristics of stability and intelligence.
作者 王赛赛 陈捷 王华 潘裕斌 WANG Saisai;CHEN Jie;WANG Hua;PAN Yubin(School of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211816,China;Jiangsu Key Laboratory of Digital Manufacturing for Industrial Equipment and Control Technology,Nanjing 211816,China)
出处 《振动与冲击》 EI CSCD 北大核心 2020年第7期238-244,259,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(51875273) 江苏省六大人才高峰项目(2016-GDZB-033)。
关键词 回转支承 深度学习 改进DBN 寿命状态识别 Slewing bearing Deep learning Improved DBN Life state recognition
  • 相关文献

参考文献3

二级参考文献52

  • 1Worden K,Lane A J. Damage identification using support vector machines[J].Smart Material & Structure,2001,(3):540-547.
  • 2Jack L B,Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults[J].{H}Journal Mechanical Engineering Science,2001,(9):1065-1074.
  • 3Vapnik V. Statistical learning theory[M].{H}New York:John Wiley and Sons,Inc,1998.
  • 4Cortes C,Vapnik V. Support-vector network[J].{H}Machine Learning,1995,(20):273-297.
  • 5邓乃扬;田英杰.数据挖掘中的新方法:支持向量机[M]{H}北京:科学出版社,2004.
  • 6张慧芳.3兆瓦风电偏航回转支承故障信号处理的方法研究[D]{H}南京:南京工业大学,2012.
  • 7史峰;王小川;郁磊.Matlab神经网络30个案例分析[M]{H}北京:北京航空航天大学出版社,2010.
  • 8Yang Y, Yu D, Cheng J. A roller bearing fault diag- nosis method based on EMD energy entropy and ANN [J]. Journal of Sound and Vibration, 2006, 294(1).. 269 -277.
  • 9Shen Z, Chen X, Zhang X, et al. A novel intelligent gear fault diagnosis model based on EMD and multi- classTSVM [J]. Measurement, 2012, 45(1): 30-- 40.
  • 10Li B, Liu P, Hu R, et al. Fuzzy lattice classifier and its application to bearing fault diagnosis [J]. Applied Soft Computing, 2012, 12(6): 1708--1719.

共引文献110

同被引文献21

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部