期刊文献+

全程多约束条件下火箭弹最优轨迹设计及跟踪 被引量:2

Optimal Trajectory Design and Tracking for Rockets Considering Whole Phase Multiple Constraints
下载PDF
导出
摘要 为了提高火箭弹在全程多约束条件下的射程,提出了一种最优轨迹设计及制导方法。首先构建火箭弹优化模型,在射程最大为优化性能指标下进行最优轨迹设计;然后提出了一种基于LQR(线性二次型调节器,linear quadratic regulator)的跟踪制导律设计方法,实现了对最优轨迹的高度、速度和弹道倾角等多变量跟踪;最后通过数学仿真进行验证,结果表明,火箭弹的射程经优化后明显提高,设计的制导律能够实现精确跟踪。 Aiming at increasing the range of Guided Rockets considering whole phase multiple constraints,an optimal trajectory design and guidance method was proposed. The optimization model of rockets was established,considering the range as the optimization index,an optimal trajectory design method was proposed. Designing a LQR-based approach for trajectory guidance method,the multivariable tracking of optimal trajectory was achieved containing height,velocity and flight path angle. Simulations were made,which demonstrate that the trajectory range significantly increased,the optimal trajectory is tracked exactly by the proposed guidance law.
作者 李佳星 温求遒 夏群利 LI Jiaxing;WEN Qiuqiu;XIA Qunli(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《弹箭与制导学报》 北大核心 2019年第5期31-34,38,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 火箭弹 最优轨迹设计 多变量跟踪 rockets optimal trajectory design multivariable tracking
  • 相关文献

参考文献5

二级参考文献37

  • 1李瑜,杨志红,崔乃刚.助推-滑翔导弹弹道优化研究[J].宇航学报,2008,29(1):66-71. 被引量:39
  • 2雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 3魏伟波,芮筱亭.精确制导技术研究[J].火力与指挥控制,2006,31(2):5-8. 被引量:8
  • 4霍鹏飞,施坤林,苑伟政.基于极大值原理的弹道修正引信弹道优化控制研究[J].兵工学报,2007,28(3):301-304. 被引量:9
  • 5郑建华,杨涤,栾泽威. BTT导弹自动驾驶仪H∞鲁棒优化设计方法[C].中国1995飞行力学学术年会论文集,1995.
  • 6Doyle J C, Glover K, Khargonegar P, et al. State-Space Soluting to Standard H2 and H∞ Control Problem[C]. Proceeding of the American Control Conference, Atlanta, 1988.
  • 7Zhou K, Khargonegar P. An Algebraic Riccati Equation Approach to H∞ Optimization[J]. Systems Control Letter, 1988, 11: 85-92.
  • 8Gloer K, Doyle J. State-Space Formulate for all Stabilizing Controllers that Satisfy an H∞ Norm Bound and Relations to Risk Sensitivity[J]. Systems and Control Letters, 1998, 11: 167-172.
  • 9Zames G. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverse[J]. IEEE Trans. on Automatic Control, 1981: 301-320.
  • 10Mukhopadhyay V, Newsom J R. A Multi-loop System Stability Margin Study Using Matrix Singular Values[J]. J. Guidance, 1984: 585-587.

共引文献26

同被引文献37

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部