摘要
冶金过程是一个涉及高温、多相流动和复杂物理变化及化学反应的多个反应单元体串联和并联的冶炼过程。目前由于单元反应器现场条件的复杂性和测量观测手段的限制,数值模拟和物理模拟相结合的研究方法已成为重现和解析其物理现象及传输机理不可或缺的手段。在洁净钢的冶炼中,由于气相的参与,形成了复杂多变的气液两相流,对反应器内的传输行为产生重要影响。两相流模拟的核心在相界面上,相间动量传递模型和相间作用力模型的精确性是准确预报不同两相流体系中气相分布的关键。本文综述了冶金过程中基于Euler体系模拟气液两相流动的几种基本模型,以及相间作用力模型和湍流模型。总结了不同冶金过程和反应器内(转炉炼钢、电炉炼钢、精炼、中间包、结晶器)气液两相流动传输行为数值和物理模拟的应用和发展趋势。
The metallurgical process involves complex phenomena comprising high temperature, the multiphase flow, and the physical and chemical reactions in the process reactors. Because of the complexity of the metallurgical process and the limitation conditions for the direct measuring and observation,numerical and physical simulations have become indispensable and effective tools to analyze and reproduce the transport phenomena and mechanisms occurring in the process. Transport phenomena of the gas-liquid two-phase flow plays a dominant role in process metallurgy since their respective movement laws govern the kinetics of the various physical phenomena in the metallurgical reactors. The gas-liquid two-phase flow has complex interface structures, and the accuracy of the interfacial momentum transfer models, including the interfacial forces, which is one of the keys to predicting the distribution of gas phase in the two-phase flow system successfully. This paper is aiming at reviewing the two-phase flow models based on the Euler-Euler system, the interfacial force model, and the turbulence model for gas-liquid two-phase flow. The use and extent of numerical and physical simulation for transport phenomena of twophase flow in the steelmaking and casting processes are summarized and explored, including the basic oxygen furnace, electric arc furnace, refining, tundish, and molds. The methods and typical application in the numerical and physical simulation of gas-liquid two-phase flow will provide useful guides for the research.
作者
王波
沈诗怡
阮琰炜
程淑勇
彭望君
张捷宇
WANG Bo;SHEN Shiyi;RUAN Yanwei;CHENG Shuyong;PENG Wangjun;ZHANG Jieyu(State Key Laboratory of Advanced Special Steel,Shanghai University,Shanghai 200444,China;School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China)
出处
《金属学报》
SCIE
EI
CAS
CSCD
北大核心
2020年第4期619-632,共14页
Acta Metallurgica Sinica
关键词
冶金过程
气液两相流
数值模拟
物理模拟
metallurgical process
gas-liquid two-phase flow
numerical simulation
physical simulation