期刊文献+

基于统计噪声水平分析的图像拼接检测 被引量:5

Image splicing detection based on statistical noise level analysis
原文传递
导出
摘要 图像拼接是最常用的图像篡改操作之一,针对篡改图像噪声水平不一致性的现象,本文提出了一种基于统计噪声水平分析的图像拼接检测方法。首先,将检测图像分割成大小相同的非重叠图像块,然后,利用一种非参数估计算法来估计每个图像块的噪声值,并且采取聚类法对图像块的噪声值进行聚类,聚类结果分为可疑部分和非可疑部分两大类。最后,通过一个由粗到细的两阶段策略对篡改区域进行定位。哥伦比亚未压缩图像拼接检测评估图像库的实验结果表明,本文方法能够准确地估计图像块的噪声和定位出拼接区域,性能优于现有方法。 Image splicing is one of the most commonly used image tampering operations.In this paper,we propose an effective image splicing detection method based on image noise level inconsistency.First,the suspicious image is divided into non-overlapping blocks.Then,the noise value of each image block is estimated by a new nonparametric algorithm.The method of clustering was used to classify according to the noise value and the clustering result was divided into two categories:suspicious part and non-suspicious part.Finally,the two-stage strategy from coarse to fine further locate the tampering area.Experimental results over Colombian Uncompressed Image Splicing Detection Evaluation Dataset demonstrate that the proposed method can detect and locate the tampered regions more accurately than state-of-the-arts investigated.
作者 熊士婷 张玉金 吴飞 刘婷婷 XIONG Shi-ting;ZHANG Yu-jin;WU fei;LIU Ting-ting(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,201620,China;Shanghai Key Laboratory of Integrated Administration Technologies for Information Security,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2020年第2期214-221,共8页 Journal of Optoelectronics·Laser
基金 上海市科委重点项目(18511101600) 上海市自然科学基金项目(17ZR1411900) 上海市信息安全综合管理技术研究重点实验室项目(AGK2015006) 上海高校青年教师培养资助计划项目(ZZGCD 15090) 上海工程技术大学科研启动项目(2016-56) 上海市科委重点项目(18511101600) 上海工程技术大学研究生创新项目(18KY0208)。
关键词 图像取证 篡改探测 噪声水平估计 拼接定位 聚类 image forensics forgery detection noise level estimation splicing localization clustering
  • 相关文献

参考文献3

二级参考文献51

  • 1李艳丽,向辉.稳健的球面全景图全自动生成算法[J].计算机辅助设计与图形学学报,2007,19(11):1393-1398. 被引量:15
  • 2Phan R C W. Tampering with a watermarking-based image authentication scheme[J]. Pattern Recognition, 2008, 41(11): 3493-3496.
  • 3Nezhadarya E, Wang Z J, and Ward R K. Robust image watermarking based on multiscale gradient direction quantization[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(4): 1200-1213.
  • 4Chan K C, Moon Y S, and Cheng P S. Fast fingerprint verification using sub-regions of fingerprint images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 95-101.
  • 5Farid H. A survey of image forgery detection[J]. IEEE Signal Processing Magazine, 2009, 26(2): 16-25.
  • 6Dirik A E and Memon N. Image tamper detection based on demosaicing artifacts[C]. Proceedings of IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 2009: 1497-1500.
  • 7Cao H and Kot A C. Accurate detection of demosaicing regularity for digital image forensics[J]. IEEE Transactions on Information Forensics and Security, 2009, 4(4): 899-910.
  • 8Cao H and Kot A C. Manipulation detection on image patches using fusionboost[J]. IEEE Transactions on In.formation Forensics and Security, 2012, 7(3): 992-1002.
  • 9Fridrich J, Chen M, and Goljan M. Imaging sensor noise as digital x-ray for revealing forgeries[C]. Proceedings of 9th International Workshop on Information Hiding (IH), Saint Malo, France, 2007: 342-358.
  • 10Pan X, Zhang X, and Lyu S. Exposing image splicing with inconsistent local noise variances[C]. Proceeding of the IEEE International Conference on Computational Photography, Seattle, USA, 2012: 1-10.

共引文献7

同被引文献10

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部