摘要
对复杂网络上的性传播疾病模型进行了研究,利用李雅普诺夫函数,证明了基本再生数R0决定系统的全局动力学性质.当R0<1时,疾病灭绝;当R0>1时,疾病持久存在,并且正平衡点是全局渐近稳定的.最后,通过数值模拟表明采取措施会减少性病的传播.
In this paper,a sexually transmitted disease model on a complex network is studied,and the global dynamic properties of the system determined by basic regeneration number are proved by using lyapunov function.R0<1,the disease died out;R0>1,the disease persists,and the positive balance point is globally progressive and stable.Finally,numerical simulations show that measures can reduce the spread of sexually transmitted diseases.
作者
胡慧敏
乔志琴
HU Huimin;QIAO Zhiqin(School of Science, North University of China, Taiyuan 030051, China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第2期165-173,共9页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(11401541)
博士学科点专项科研基金项目(20111420120006).
关键词
性传播疾病
低风险易感者
高风险易感者
平衡点的稳定性
李雅普诺夫函数
sexually transmitted disease
low-risk susceptible
high-risk susceptible
stability of the equilibrium point
Liapunov function