期刊文献+

求解Kuramoto-Sivashinsky方程的有限体积二次元方法

Quadratic Finite Volume Element Method for the Solution of the Kuramoto-Sivashinsky Equation
下载PDF
导出
摘要 Kuramoto-Sivashinsky方程是一个非线性四阶偏微分方程,常被用于反应扩散系统的动力过程建模。在文章中,首先引入一个新变量,将方程转化为一个低阶的方程组,然后采用有限体积二次元方法对其空间变量进行离散近似,时间积分采用显式2阶Runge-Kutta格式,在数值实验中采用所提出的方法分别对激波解以及混沌现象进行数值模拟。结果表明提出的有限体积元方法能够对以上各种现象进行有效模拟。 The Kuramoto-Sivashinsky equation belongs to nonlinear four-order partial differential equations(PDEs),which is commonly used for the modelling of dynamics in reaction-diffusion systems.In this paper,a new variable is introduced and the K-S equation can be converted into low-order equations.The finite volume quadratic element method is used to approximate the space derivatives of the equations.As for the time integration,explicit two-order Runge-Kutta scheme was utilized,Numerical experiments,including two travelling shock waves,a chaotic would be simulated by the proposed method respectively.The results demonstrate that our method could simulate all the above experiments successfully.
作者 卢付强 史永 王甜 余晓栋 LU Fuqiang;SHI Yong;WANG Tian;YU Xiaodong(School of Computer Information Engineering, Changzhou Institute of Technology, Changzhou 213032;Key Laboratory of Changzhou Software Technology Research and Application, Changzhou 213032)
出处 《常州工学院学报》 2020年第1期25-31,共7页 Journal of Changzhou Institute of Technology
基金 国家自然科学基金(41901323) 江苏省高等学校自然科学研究项目(18KJB520004) 常州市科技项目应用基础研究计划(CJ20180038)。
关键词 KURAMOTO-SIVASHINSKY方程 数值近似 有限体积二次元方法 Runge-Kutta格式 Kuramoto-Sivashinsky equation numerical approximation finite volume quadratic element method Runge-Kutta scheme
  • 相关文献

参考文献3

二级参考文献47

  • 1Aksan E.N.A numerical solution of Burgers' equation by finite element method constructed on the method of discretization in time[J].Appl.Math and Comput,2005,170:895-904.
  • 2Aksan E.N.Quadratic B-spline finite element method for numerical solution of the Burgers' equation[J].Appl.Math.and Comput.,2006,174:884-896.
  • 3Saka B.,Da I.Quartic B-spline collocation method to the numerical solution of Burgers'equation[J].Chaso,silitons and Fractals,2007,32:1125-1137.
  • 4Aksan E.N.,(O)zdes A.Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method[J].AppL Math.and Comput.,2006,175:1256-1265.
  • 5Kuramoto Y,Tsuzuki T.On the formation of dissipative structures in reaction-diffusion systems[J].Prog.Theor.Phy.,1975,54(3):687-699.
  • 6Sivashinsky G.I,Nonlinear analysis of hydrodynamic instability in laminar flames-I:derivation of basic equations[J].Acta.Astrorsautica,1977(4):1177-1206.
  • 7Hooper A.P.,Grimshaw R..Travelling wave solutions of the Kuramoto-Sivashinsky equation[J].Wave Motion,1988(10):405-420.
  • 8Manickam A.V.,Moudgalya K.M.,Pani A K.Second -order splitting combined with orthogonal cubic spline collocation method for the Kuramoto-sivashinsky equation[J].Comput.Math.AppL,,1998,35:5-25.
  • 9Fan Engui.Extended tanh-function method and its applications to nonlinear equations[J].Phys.Lett.A,2000,277:212-218.
  • 10Xu Yan,Shu Chiwang.Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coplued KdV equations[J].Comput.Meth.Appl.Mech Eng.,2006,195:3430-3447.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部