期刊文献+

基于神经网络的学习状态检测 被引量:3

Detection of the Learning State Based on Neural Network
下载PDF
导出
摘要 对在线学习者注意力状态检测的方法大多基于眼睛闭合频率、头部偏转等特征,此类方法能够应对大多数情况,但针对学习者正视屏幕且视线落点处于屏幕上时出现的发呆、分神状态无法作出检测。针对此问题,提出了一种基于RNN的眼动分析算法RNN-EMA(RNN-EyeMovementAnalysis),该算法通过对序列眼动向量分析,预测学生学习行为,完成当前学习状态检测。实验表明,RNN-EMA算法能够对学习状态作出有效检测,且对比同类方法效果有所提升。 Online learners’ attention states are mostly detected through eye closure frequency, head rotation and other action features. These methods can cope with most situations, but cannot detect the absent-minded and distracted state when the learner is facing the screen and the sight point is on the screen. To solve this problem, the paper proposes an RNN-EMA(RNN-Eye Movement Analysis) algorithm based on RNN. The algorithm predicts the learning behavior of students through sequential eye movement vector analysis, and conducts the current learning state detection. Experiments show that the RNNEMA algorithm can effectively detect the learning state, and the accuracy is improved compared with other methods of the same kind.
作者 郑茜元 郑虹 侯秀萍 ZHENG Qianyuan;ZHENG Hong;HOU Xiuping(School of Computer Science and Engineering,Changchun University of Technology,Changchun 130000,China)
出处 《软件工程》 2020年第5期6-8,5,共4页 Software Engineering
基金 吉林省教育厅项目(JJKH20181046KJ).
关键词 在线学习 循环神经网络 眼动分析 注意力检测 online learning RNN eye movement analysis attention detection
  • 相关文献

参考文献5

二级参考文献52

  • 1邓铸.眼动心理学的理论、技术及应用研究[J].南京师大学报(社会科学版),2005(1):90-95. 被引量:107
  • 2杜祥培.试论教学质量监控的主要环节及其标准[J].中国大学教学,2005(2):47-48. 被引量:47
  • 3HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 4PANTIC M, ROTHKRANTZ L. Expert system for automatic analysis of facial expression [ J ]. Image Vision Computing, 2000 ( 11 ) : 881-905.
  • 5Treisman A M,Gelade G. A feature-integration theory of atten- tion[J]. Cognitive psychology, 1980,12( 1 ) :97-136.
  • 6Itti L,Koch C, Niebur E. A Model of Saliency-Based Visual At- tention for Rapid Scene Analysis[J]. IEEE Transactions on PA- MI, 1998,20(11 ) .. 1254-1259.
  • 7Harel J, Koch C, Perona P. Graph-based visual saliency[C]// NIPS. 2007 .. 545-552.
  • 8Cheng M M,Zhang G X,Mitra N J,et al. Global contrast based salient region detection[C]//IEEE CVPR. 2011:409-416.
  • 9Zhang J M, Sclaroff S. Saliency Detection: A Boolean Map Ap- proach[C]//ICCV. 2013 : 153-160.
  • 10Judd T, Ehinger K, Durand F, et al. Learning to predict where humans look[C]//ICCV. 2009 .. 2106-2113.

共引文献29

同被引文献31

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部