期刊文献+

带结构风险最小化的最优区间回归模型辨识 被引量:3

Identification of optimal interval regression model with structural risk minimization
下载PDF
导出
摘要 针对来自模型结构、参数以及测量数据的不确定性等因素,传统的辨识方法获取的是确定性数学模型的点输出,其鲁棒性差,易受外界干扰.因此,采用区间输出比点输出更易于实际问题的研究.基于复杂系统的不确定性测量数据以及系统参数的不确定性,提出了最优区间回归模型辨识的一种新方法,该方法将逼近误差的L∞范数思想与结构风险最小化理论相结合,建立求解区间模型的最优化问题,应用线性规划独立求解区间模型的上界和下界模型.该方法在保证模型辨识精度的同时,其泛化性能得到进一步提高.实验分析表明,提出的方法对来自噪声以及参数不确定性的数据,可以从区间模型的辨识精度和泛化性能之间取其平衡. Aiming at the characteristics from a family of uncertain nonlinear functions or the systems with uncertain physical parameters, the problem of the conventional nonlinear system modeling, referred to as the deterministic modeling method whose output is a single value(or a point output), is prone to produce a poor robustness and is subject to external disturbance. This paper proposes a novel method for identifying optimal interval regression model(OIRM) with sparsity only based on the uncertain measurements of complex system. The OIRM, differently from standard deterministic models, is composed of upper regression model(URM) and lower regression model(LRM), and returns an interval output as opposed to a point output. The method combines sparsity stemming from the idea of structural risk minimization(SRM) principle,and optimality using L∞-norm of approximation errors with some notions from linear programming(LP) problem. The optimization problems corresponding to URM and LRM with constraints in a form of convex inequality and linear equality are independently solved by LP. Finally, the equilibrium between modeling accuracy and generalization performance of the proposed OIRM are demonstrated by the experimental cases using the two indices, the fractions of utilised support vectors(SVs) and root mean square error(RMSE).
作者 刘小雍 方华京 陈孝玉 LIU Xiao-yong;FANG Hua-jing;CHEN Xiao-yu(College of Engineering,Zunyi Normal University,Zunyi Guizhou 563006,China;School of Automation,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第3期560-573,共14页 Control Theory & Applications
基金 国家自然科学基金项目(61473127) 贵州省科技计划项目(黔科合基础[2018]1179,黔科合LH字[2016]7002号,黔科合LH字[2016]7004号) 贵州省教育厅科技人才成长项目(黔教合KY字[2016]254) 贵州省高层次创新人才项目([2017]19)资助.
关键词 结构风险最小化 不确定性分析 逼近误差的L∞范数优化 最优区间回归模型 线性规划 structural risk minimization uncertain analysis L∞-norm optimization on approximation errors optimal interval regression model linear programming
  • 相关文献

参考文献5

二级参考文献44

  • 1王俊伟,汪定伟.一种带有梯度加速的粒子群算法[J].控制与决策,2004,19(11):1298-1300. 被引量:45
  • 2[11]刘金锟.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
  • 3胡寿松.自动控制原理.北京:科学出版社,2006.
  • 4Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 1981, 26(2): 301-320.
  • 5Doyle J. Analysis of feedback systems with structured uncertainties. IEE Proceedings D: Control Theory and Applications, 1982, 129(6): 242-250.
  • 6Lin C, Wang Q C, Lee T H. A less conservative robust stability test for linear uncertain time-delay systems. IEEE Transactions on Automatic Control, 2006, 51(1): 87-91.
  • 7Goh C K, Teoh E J, Kay C T. Hybrid multiobjective evolutionary design for artificial neural networks. IEEE Transactions on Neural Networks, 2008, 19(9): 1531-1548.
  • 8Islam M, Sattar A, Amin F, Yao X, Murase K. A new constructive algorithm for architectural and functional adaptation of artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1590-1605.
  • 9Volyanskyy K Y, Haddad W M, Calise A J. A new neuroadaptive control architecture for nonlinear uncertain dynamical systems: beyond sigma- and e-modifications. IEEE Transactions on Neural Networks, 2009, 20(11): 1703-1723.
  • 10Hung J Y, Gao W B, Huang J C. Variable structure control: a survey. IEEE Transactions on Industrial Electronics, 1993, 40(1): 2-22.

共引文献21

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部