摘要
根据高速公路交通数据的特点,采用基于最大偏差相似性准则(MDSC)与KNN填充算法对缺失交通数据进行填充。针对KNN填充算法可能产生伪邻近点问题,提出利用MDSC对不完整的交通数据中缺失的属性样本和完整值数据样本进行聚类,以避免伪邻近点发生;并利用基于骨干粒子群算法对MDSC参数优化。实验结果表明:基于优化MDSC的KNN填充算法的RMSE值更小,效果更优。
A KNN missing data filling algorithm based on improved maximum deviation similarity criterion is proposed.Considering the characteristics of expressway traffic data,the missing data matching algorithm based on the maximum deviation similarity criterion and KNN is confirmed to fill the missing traffic data.For the problem that the KNN filling algorithm will produce the nearest neighbor noise(pseudo-neighbor),it is proposed to use the maximum deviation similarity criterion to cluster the complete value data samples for the missing attributes in the incomplete traffic data to avoid the pseudo-neighbors.occur.Among them,the key parameter selection problem of MDSC algorithm is based on the backbone particle swarm optimization algorithm to optimize the MDSC parameters.The simulation results show that the missing RMSE value of the missing traffic data based on the improved MDSC KNN filling algorithm is smaller and the effect is better.
作者
阮嘉琨
蔡延光
蔡颢
王建成
Ruan Jiakun;Cai Yanguang;Cai Hao;Wang Jiancheng(School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Department of Health Science and Technology,Aalborg University,Auerbarg 9920,Denmark)
出处
《自动化与信息工程》
2020年第2期8-15,26,共9页
Automation & Information Engineering
基金
国家自然科学基金(61074147)
广东省自然科学基金(S2011010005059)
广东省教育部产学研结合项目(2012B091000171,2011B090400460)
广东省科技计划项目(2012B050600028,2014B010118004,2016A050502060)
广州市花都区科技计划项目(HD14ZD001)
广州市科技计划项目(201604016055)
广州市天河区科技计划项目(2018CX005)。
关键词
智能交通
高速公路
缺失数据填充
聚类算法
intelligent transportation
highway
missing data filling
clustering algorithm