期刊文献+

基于优化最大偏差相似性准则的KNN缺失数据填充算法 被引量:2

KNN Missing Data Filling Algorithm Based on Optimized Maximum Deviation Similarity Criterion
下载PDF
导出
摘要 根据高速公路交通数据的特点,采用基于最大偏差相似性准则(MDSC)与KNN填充算法对缺失交通数据进行填充。针对KNN填充算法可能产生伪邻近点问题,提出利用MDSC对不完整的交通数据中缺失的属性样本和完整值数据样本进行聚类,以避免伪邻近点发生;并利用基于骨干粒子群算法对MDSC参数优化。实验结果表明:基于优化MDSC的KNN填充算法的RMSE值更小,效果更优。 A KNN missing data filling algorithm based on improved maximum deviation similarity criterion is proposed.Considering the characteristics of expressway traffic data,the missing data matching algorithm based on the maximum deviation similarity criterion and KNN is confirmed to fill the missing traffic data.For the problem that the KNN filling algorithm will produce the nearest neighbor noise(pseudo-neighbor),it is proposed to use the maximum deviation similarity criterion to cluster the complete value data samples for the missing attributes in the incomplete traffic data to avoid the pseudo-neighbors.occur.Among them,the key parameter selection problem of MDSC algorithm is based on the backbone particle swarm optimization algorithm to optimize the MDSC parameters.The simulation results show that the missing RMSE value of the missing traffic data based on the improved MDSC KNN filling algorithm is smaller and the effect is better.
作者 阮嘉琨 蔡延光 蔡颢 王建成 Ruan Jiakun;Cai Yanguang;Cai Hao;Wang Jiancheng(School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Department of Health Science and Technology,Aalborg University,Auerbarg 9920,Denmark)
出处 《自动化与信息工程》 2020年第2期8-15,26,共9页 Automation & Information Engineering
基金 国家自然科学基金(61074147) 广东省自然科学基金(S2011010005059) 广东省教育部产学研结合项目(2012B091000171,2011B090400460) 广东省科技计划项目(2012B050600028,2014B010118004,2016A050502060) 广州市花都区科技计划项目(HD14ZD001) 广州市科技计划项目(201604016055) 广州市天河区科技计划项目(2018CX005)。
关键词 智能交通 高速公路 缺失数据填充 聚类算法 intelligent transportation highway missing data filling clustering algorithm
  • 相关文献

参考文献4

二级参考文献64

  • 1谢川,倪世宏,张宗麟.一种缺失飞行参数预处理的新方法[J].计算机仿真,2005,22(4):27-31. 被引量:9
  • 2王涛,李舟军,胡小华,颜跃进,陈火旺.一种高效的数据流挖掘增量模糊决策树分类算法[J].计算机学报,2007,30(8):1244-1250. 被引量:18
  • 3张亮.电力调度数据中心数据质量问题研究[J].华东电力,2009,37(3):403-406.
  • 4Tian Y, Lin C, Yao M. Modeling and analyzing power management policies in server farms using stochastic petri nets/ /Proceedings of the 3rd International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet. Beijing, China, 2012: 26.
  • 5Fan X, Weber W D, Barroso LA. Power provisioning for a warehouse-sized computer/ /Proceedings of the 34th Annual International Symposium on Computer Architecture(lSCA 07). New York, USA, 2007: 13-23.
  • 6Lee Y C, Zomaya A Y. Energy efficient utilization of resources in cloud computing systems. The Journal of Supercomputing, 2012, 60(2): 268-280.
  • 7Bohra A E H, Chaudhary V. VMeter: Power modelling for virtualized clouds/ /Proceedings of the 2010 IEEE Interna?tional Symposium on Parallel &. Distributed Processing, Workshops and Phd Forum (lPDPSW 2010). Atlanta, USA, 2010: 1-8.
  • 8Dhiman G, Mihic K, Rosing T. A system for online power prediction in virtualized environments using Gaussian mixture models/ /Proceedings of the 47th ACM/IEEE Design Automation Conference (DAC). New York, USA, 2010: 807-812.
  • 9Choi J, Govindan S, U rgaonkar B, et al. Profiling, prediction, and capping of power consumption in consolidated environ?ments/ /Proceedings of the IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems (MASCOTS' 08). Baltimore, USA, 2008: 1-10.
  • 10Zhou Z, Liu F, Li Z. Pricing bilateral electricity trade between smart grids and hybrid green datacenters/ /Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. Portland, USA, 2015.

共引文献54

同被引文献42

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部