期刊文献+

基于GIS的农作物病虫害受灾程度可视化识别方法研究 被引量:6

Research on Visualization and Recognition Method of Crop Disease and Insect Pests Based on GIS
下载PDF
导出
摘要 为了增强农作物病虫害防范治理效果,对受灾情况进行识别预警非常重要。鉴于现实需求,提出基于GIS的农作物病虫害受灾程度可视化识别方法。选择安徽省东南部的某地区,利用GIS和GPS相互结合的形式对农作物病虫害灾情信息和动态信息进行动态定位和采集,并通过数据导入转换、数据浏览和编辑、基于GIS的信息数据可视化与查询、信息数据统计汇总上报、病虫害信息数据时间序列剖析等功能单元对所采集的信息进行管理。根据病虫害信息采集与管理,引入反距离加权法针对已采集区域范围内的各个点外相近区域病虫害状况进行评估预测,最后根据ArcGIS导出生成的专题图文件,利用ArcGIS Server发布同时指定服务地址。移动终端根据指定服务地址构建动态的服务图层,加入至地图容器中将识别结果显示出来,并依据识别结果进行预警,实现精准农业。 In order to enhance the effectiveness of crop pest control, it is very important to identify and warn the disaster situation.In view of the actual needs, a visual identification method based on GIS for the degree of crop pests and diseases is proposed.Selecting a certain area in the southeastern part of Anhui Province, using GIS and GPS to combine the dynamic information and dynamic information of crop pests and diseases, and through data import and conversion, data browsing and editing, GIS-based information data visualization and query Functional units such as statistical summary of information data, time series analysis of pest information data, and other functional units manage the collected information.According to the information collection and management of pests and diseases, the inverse distance weighting method was introduced to evaluate and predict the pests and diseases in different areas within the collected area.Finally, according to the thematic map files generated by ArcGIS, the ArcGIS Server was used to publish the specified service addresses.The mobile terminal constructs a dynamic service layer according to the specified service address, adds it to the map container, displays the recognition result, and performs early warning according to the recognition result to achieve precision agriculture.The experimental results show that the proposed method has high recognition rate and is feasible.
作者 高羽佳 王永梅 陈祎琼 张友华 GAO Yujia;WANG Yongmei;CHEN Yiqiong;ZHANG Youhua(Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information,Anhui Agricultural University,Hefei 230036,China;College of Information and Computer,Anhui Agricultural University,Hefei 230036,China)
出处 《灾害学》 CSCD 北大核心 2020年第2期26-29,共4页 Journal of Catastrophology
基金 国家重点研发计划课题(2017YFD0301303) 安徽省高等学校省级质量工程项目(2018jyxm1357) 安徽省2018年度大学生创新创业计划(201810364158) 教育部协同育人项目(201702126125)。
关键词 病虫害 受灾程度 可视化识别 精准农业 GIS GPS pests and diseases degree of disaster visual identification precision agriculture GIS GPS
  • 相关文献

参考文献10

二级参考文献123

共引文献142

同被引文献70

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部