期刊文献+

鲁棒性主成分分析算法综述

下载PDF
导出
摘要 对低秩矩阵中的存在的鲁棒性主成分分析进行综述,并分析该存在的优化模型及其优化算法,并分析这些不同的优化方法存在的优缺点以及可能的应用领域,最后指出该模型进一步的研究方向。 in this paper,the robust principal component analysis(pca)in low-rank matrices is summarized,and the optimization model and algorithm of the existence are analyzed.The advantages and disadvantages of these different optimization methods and their possible application fields are analyzed.Finally,the further research direction of the model is pointed out.
出处 《数码设计》 2019年第18期41-42,共2页 Peak Data Science
关键词 鲁棒性主成分分析 交替方向乘子法 迭代阈值算法 加速近端梯度法 robust principal component analysis Alternating direction multiplier method Iterative threshold algorithm Accelerated proximal gradient method
  • 相关文献

参考文献1

二级参考文献30

  • 1JIANG Xu-dong. Linear subspace learning-based dimensionality reduction [ J ]. I EEE Signal Processing Magazine,2011,28 ( 2 ) : 16- 26.
  • 2DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory,2006,52 (4) : 1289-1306.
  • 3CANDES E J, MICHAEL W. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine,2008,25(2) :21-30.
  • 4WRIGHT J, ALLEN Y, GANESH A, et al. Robust face recognition via sparse representation[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2009,31 ( 2 ) :210-227.
  • 5WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition [ J ]. Proceedings of the IEEE,2010, 98(6) :1031-1044.
  • 6WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis : exact recovery of corrupted low-rank matrices via convex optimization [ C ]//Proc of the 24th Annual Conference on Neural Information Processing Systems. 2009 : 2080-2088.
  • 7CANDES E J, LI Xiao-dong, MA Yi, et al. Robust principal component analysis? [J]. dournal of the AOM,2011,58(3) :1-37.
  • 8XU Huan, CARAMANIS C, SANGHAVI S. Robust PCA via outlier pursuit [ J]. IEEE Trans on Information Theory, 2012,58 ( 5 ) : 3047- 3064.
  • 9CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics,2009,9 (6) :717-772.
  • 10CANDES E J, TAO T. The power of convex relaxation : Near-optimal matrix completion[ J]. IEEE Trans on Information Theory,2010, 56 ( 5 ) :2053- 2080.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部