摘要
目的探讨Fisher判别分析对1型及2型糖尿病患者的分类判别价值。方法选取糖尿病患者165例,其中1型糖尿病病例14例,2型糖尿病病151例。以动态血糖监测系统监测患者的血糖数据计算出17个血糖波动特征,以此为原始数据建立数据库,利用SPSS统计软件提供的Fisher判别分析方法建立分类模型,检验模型判别1型及2型糖尿病患者效果,采用受试者工作特征曲线(ROC)对模型进行评价。结果建立的Fisher判别分析分类模型判别2型糖尿病的正确率为90.1%,判别1型糖尿病组的正确率为57.1%,1型及2型糖尿病合计判别正确率为87.3%,交叉核实法检验总判别正确率为83.0%。Fisher判别分析1型及2型糖尿病的ROC曲线下面积为0.736,判别1型与2型糖尿病的准确性、特异性、敏感性分别为83.7%、94.4%、34.8%。结论Fisher判别分析对1型及2型糖尿病患者的分类能力良好。
Objective To explore the value of Fisher's discriminant analysis(FDA)in the classification of patients with type 1 and type 2 diabetes mellitus.Methods A total of 165 diabetic patients were selected,including 14 cases of type 1 diabetes and 151 cases of type 2 diabetes.Using the blood glucose monitoring system(CGMS)to monitor the patient's blood glucose data,17 blood glucose fluctuation characteristics were calculated,and a database was established based on the original data.The classification model was established using the FDA method provided by SPSS statistical software,and we tested its ability in determining type 1 and type 2 diabetic patients.The receiver operating characteristic curve(ROC)was used to evaluate the model.Results By the classification model based on FDA method,the discriminant accuracy was 90.1%in determining type 1 diabetes and 57.1%in type 2 diabetes,the total discriminant accuracy was 87.3%,and the total accuracy by cross-verified test was 83.0%.The area under the ROC curve was 0.736,and the accuracy,specificity,and sensitivity of the Fisher classification model in determining type 1 and type 2 diabetes were 83.7%,94.4%,and 34.8%.Conclusion FDA has a good ability to classify patients with type 1 and type 2 diabetes.
作者
司马明珠
李全忠
王延年
SIMA Mingzhu;LI Quanzhong;WANG Yannian(Zhengzhou University People's Hospital,Zhengzhou 450000,China;不详)
出处
《山东医药》
CAS
2020年第13期17-20,共4页
Shandong Medical Journal
基金
河南省科技攻关计划项目(162102310605)。
关键词
糖尿病
动态血糖监测系统
FISHER判别分析
糖尿病分型
diabetes mellitus
continuous glucose monitoring system
Fisher's discriminant analysis
diabetes classification