期刊文献+

基于自适应RBF神经网络的超空泡航行体反演控制 被引量:13

Adaptive RBF Neural Network Based Backsteppting Control for Supercavitating Vehicles
下载PDF
导出
摘要 针对超空泡航行体姿轨控制普遍存在的模型不确定性问题进行相关研究.为此,首先对其动力学特性进行分析,并建立了超空泡航行体的动力学名义模型,随后将其改写为不确定反馈系统,然后利用反演控制方法设计超空泡航行体姿轨控制器,针对模型中的未知函数利用径向基函数(Radial basis function, RBF)神经网络进行逼近并补偿,由基于Lyapunov稳定理论设计的自适应方法计算神经网络的权重,并给出稳定性证明.仿真研究验证了控制器设计的有效性. This paper is proposed for the problems of model uncertainty such as the control of supercavitating vehicles.Firstly, the nominal model of supercavitating vehicles is built based on the analysis of the vehicle dynamic characteristics.Then we rewrite it as the uncertainty feedback system, and an orbit and attitude controller is designed via the backstepping control theory. The radial basis function(RBF) neural networks are presented to approximate and compensate the unknown functions, otherwise, the weights of the neural networks are designed by the adaptive method based on the Lyapunov theory, and the stability proof is also proposed. Finally, the simulations prove the effectiveness of the above controllers.
作者 李洋 刘明雍 张小件 LI Yang;LIU Ming-Yong;ZHANG Xiao-Jian(School of Marine Science and Technology,Northwestern Polytechnical University,Xi0an 710072)
出处 《自动化学报》 EI CSCD 北大核心 2020年第4期734-743,共10页 Acta Automatica Sinica
基金 国家自然科学基金(51379176,61473233)资助。
关键词 自适应控制 RBF神经网络 超空泡航行体 反演控制 Adaptive control radial basis function(RBF) neural network supercavitating vehicles backsteppting control
  • 相关文献

同被引文献98

引证文献13

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部