期刊文献+

基于残差通道注意力和多级特征融合的图像超分辨率重建 被引量:14

Super-Resolution Image Reconstruction Based on Residual Channel Attention and Multilevel Feature Fusion
原文传递
导出
摘要 针对模型VDSR(very deep super resolution)中存在的忽略特征通道间的相互联系,不能充分利用各层特征,以及参数量过大,计算复杂度过高等问题,本文提出了一种基于残差通道注意力和多级特征融合的图像超分辨率重建网络结构,通过引入残差通道注意力,自适应校正信道的特征响应,提高了网络的表征能力。网络整体使用递归结构,在每个递归块内实现参数共享,减少了参数数量;多级特征融合的方式可以充分提取图像特征;用分组卷积代替传统卷积,进一步减少了参数数量,并降低了计算复杂度。所提算法在保证图像重建质量的同时,减少了模型的参数量并降低了计算复杂度,在图片放大4倍时,参数量和计算复杂度分别约为VDSR的0.33和0.02。 The VDSR(very deep super resolution)model has some problems such as neglecting the interconnection between feature channels,inability to fully utilize the features of each layer,excessive parameter quantity,and computational complexity.To solve these problems,this paper proposes a network structure based on a residual channel attention mechanism and multilevel feature fusion.By introducing residual channel attention,the channel′s characteristic response is adaptively corrected to improve network representation ability.A recursive structure is adopted in the network and parameter sharing is implemented in each recursive block,which reduces the number of parameters.The proposed multilevel feature fusion method can fully extract image features;traditional convolution is replaced by group convolution to further reduce the number of parameters and computational complexity.The algorithm reduces the number of parameters and complexity of the model while ensuring the quality of image reconstruction.When an image is enlarged four times,parameter quantity and computational complexity are approximately 0.33and 0.02times,respectively,those of VDSR.
作者 席志红 袁昆鹏 Xi Zhihong;Yuan Kunpeng(College of Information and Communication Engineering,Harbin Engineering University,Harbin,Heilongjiang 150001,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第4期254-262,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(60875025)。
关键词 机器视觉 超分辨率 深度学习 递归结构 分组卷积 残差通道注意力 多级特征融合 machine vision super-resolution deep learning recursive structure group convolution residual channel attention multilevel feature fusion
  • 相关文献

参考文献4

二级参考文献22

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2H S Hou, H C Andrews. Cubic spline for image interpolation and digital filtering [J]. IEEE Transaction on Signal Pressing, 1978,26(6) :508 - 517.
  • 3S Mallet, Guoshen Yu. Super-Resolution with sparse mixing es- timators [ J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2889 - 2900.
  • 4W T Freeman, T R Jones, E C Pasztor. Example-based super- resolution [ J ]. IEEE Computer Graphics and Applications, 2002,22(2) :56 - 65.
  • 5M Elad, D Datsenko. Example-based regularization deployed to super-resolution reconstruction of a single image [ J ]. The Computer Journal, 2007,50(4) : 1 - 16.
  • 6Yang Jian-chao, J Wright, T S Huang, Yi Ma. Image super-res- olution via sparse representation [J]. 1EEE Transaction on Im-age Procesfing,2010,19(ll):2861 - 2873.
  • 7Yang Jian-chao, J Wright, T S Huang, Yi. Ma, Image super- resolution as sparse representation of raw image patches [ A]. Proceedings of the 1F, IEEE Conference on Computer Vision and Pattern Recognition[ C]. Anchorage, AK, 2008.1 - 8.
  • 8R Zeyde, M Elad, M Protter. On single image scale-up using sparse-representations [ A] .Proceedings of the 7th International Conference on Curves and Surfaces [ C ]. Avignon: Avignon, France, 2010.
  • 9M Aharon, M Elad, A Bruckstein, The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse represen- tation [ J 3. IEEE, Transaction on Signal Processing, 2006, 54 (11) :4311 - 4322.
  • 10R Rubinstein, M Zibulevsky,M Elad. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pur- suit [ J/OL ]. http://www, cs. le, chnionac, il/N ronrubin/Publications/KSVD--OMP- v2. pdf, 2008-03-15.

共引文献157

同被引文献111

引证文献14

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部