期刊文献+

贵州省中部苗语音素边界检测方法研究 被引量:2

Study on the Method of Phoneme Boundary Detection of Miao Language in the Middle of Guizhou Province
下载PDF
导出
摘要 音素分割是语音研究的一个主要组成部分,在大词汇量连续语音识别及语音合成的过程中起着重要的作用。文章以贵州省中部苗语作为研究对象,对其进行特征的提取和音素边界划分。通过对录音的频谱能量进行低频、中频和高频的均值计算,找到各个频段均值点组成的波形突变点作为边界,去掉宽度低于20 ms的边界,然后将得到的边界点进行排序,再一次筛选出宽度大于20 ms的边界,得出划分的边界点。在一定的容错范围内,准确率能够达到83%。 Phoneme segmentation is a main components of speech research,it plays an important role in large vocabulary continuous speech recognition and speech synthesis.In this paper,Miao language in the middle of Guizhou Province is taken as the research object,and its feature extraction and phoneme boundary division are carried out.The mean value of low frequency,intermediate frequency and high frequency is calculated through the spectrum energy of recording.Find the wave mutation point composed of the mean points of each frequency band as the boundary and remove boundary with width less than 20 ms.Then the boundary points are sorted,and the boundary points with a width of more than 20 ms are screened out again to get the boundary points.The accuracy can reach 83%in a certain range of fault tolerance.
作者 李学林 赵冬梅 梁明秀 LI Xuelin;ZHAO Dongmei;LIANG Mingxiu(Guizhou Minzu University,Guiyang 550025,China)
机构地区 贵州民族大学
出处 《现代信息科技》 2020年第3期19-21,共3页 Modern Information Technology
基金 贵州民族大学校级课题([2018]5773-QN02)。
关键词 苗族语音 Praat标注 语谱能量 语音分割 Miao nationality’s voice Praat annotation spectrogram energy speech segmentation
  • 相关文献

参考文献3

二级参考文献15

  • 1李永宏,孔江平,于洪志.藏语文-音自动规则转换及其实现[J].清华大学学报(自然科学版),2008,48(S1):621-626. 被引量:20
  • 2曹剑芬.普通话双音子和三音子结构系统代表语料集[J].语言文字应用,1997(1):62-70. 被引量:7
  • 3曹剑芬.普通话语音的环境音变与双音子和三音子结构[J].语言文字应用,1996(2):58-63. 被引量:11
  • 4王仁华,倪晋富.从音联出发设计语音库语料[J].计算机应用与软件,1994,11(1):30-35. 被引量:1
  • 5Malfrere F,Dutiot T. High-quality speech synthesis for phonetic speech segmentation[A].Rhodes,Greece:[s.n.],1997.2631-2663.
  • 6Wang Yih-Ru. A Two-Stage Sample-based Phone Boundary Detector using Segmental Similarity Features[A].Florence,Italy:[s.n.],2011.413-416.
  • 7Stevens K N. Toward a model of lexical access based on acoustic landmarks and distinctive features[J].{H}Journal of the Acoustical Society of America,2002,(04):1372-1891.
  • 8Thomas F Quatieri. Discrete-Time Speech Signal Processing:Principles and Practice[M].S.l:Prentice Hall PTR,2001.
  • 9Liu Anne Sharlene. Landmark Detection for Distinctive Feature-Based Speech Recognition[J].{H}Journal of the Acoustical Society of America,1996,(05):3417-3430.
  • 10Park Chiyoun. Consonant Landmark Detection for Speech Recognition[EB/OL].http://dspace.mit.edu/bitstream/handle/1721.1/44905/297548228.pdf sequence=1.2008:75-77,2012.

共引文献9

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部