期刊文献+

遥感图像拼接中改进的图像预处理算法研究 被引量:3

Research on Improved Image Preprocessing Algorithm in Remote Sensing Image Mosaicing
下载PDF
导出
摘要 针对无人机遥感影像拼接中因图像噪声大、光照差异大、视野中景物存在畸变、图像不清晰等问题的影响,使得图像特征不明显、特征点提取数量少、特征点误匹配率高、拼接效果不理想甚至拼接错误等问题出现,论文提出了一种优化的遥感图像预处理算法用于无人机的遥感影像拼接。对于图像中可能存在畸变的情况,针对遥感图像的特点,提出了遥感图像畸变校正算法;且将无人机拼接最后阶段进行的匀色处理改进后应用于预处理阶段;并针对遥感图像经平滑去噪后图像细节不明显的问题,提出了基于图像锐化的平滑处理,即在图像平滑处理后使用自定义的锐化滤波器对平滑后的图像进行卷积,以增强遥感影像的细节。实验表明,论文所提出的遥感图像与处理算法,能够有效减小图像噪声、校正畸变、均衡光强、增强图像细节,使接下来的拼接工作更加高效准确,且经过验证,在后期进行特征提取时,采用论文所提预处理算法后提取到的特征点数目比起采取其他常规图像预处理算法后提取到的数目平均增加了约16%左右。 Due to the effects of large image noise,large differences in illumination,distortions in the field of vision,and unclear images in UAV remote sensing image mosaicing,the image features are not obvious,the number of feature points is small,and the feature point mismatch rate is high,the splicing effect is not ideal or even splicing errors. This paper proposes an optimized remote sensing image preprocessing algorithm for remote sensing image mosaic of drones. For the case of possible distortion in the image,a remote sensing image distortion correction algorithm is proposed for the characteristics of remote sensing images,the color processing in the final stage of UAV splice is improved and applied to the pre-processing stage,and the remote sensing image is smoothed. After the denoised image has no obvious details,a smoothing process based on image sharpening is proposed. After the image is smoothed,a sharpening filter is used to convolute the smoothed image to enhance the detail of the remote sensing image.Experiments show that the remote sensing image and processing algorithm proposed in this paper can effectively reduce image noise,correct distortion,balance light intensity,enhance image details,and make the next splicing work more efficient and accurate. And after verification,in the later feature extraction,the number of feature points extracted by using the pre-processing algorithm proposed in this paper increases by an average of about 16% compared to the number of feature points extracted after other conventional image pre-processing algorithms are adopted.
作者 么鸿原 王海鹏 林雪原 潘新龙 YAO Hongyuan;WANG Haipeng;LIN Xueyuan;PAN Xinlong(Naval Aviation University,Yantai 264000)
机构地区 海军航空大学
出处 《计算机与数字工程》 2020年第2期428-432,共5页 Computer & Digital Engineering
关键词 无人机遥感图像 预处理 畸变矫正 直方图配准 锐化滤波 UAV remote sensing image preprocessing distortion correction histogram registration sharpening filter
  • 相关文献

参考文献10

二级参考文献110

  • 1王建忠,肖绍良.图像镶嵌及其边界处理[J].模式识别与人工智能,1993,6(3):189-195. 被引量:20
  • 2葛永新,杨丹,张小洪.基于边缘特征点对对齐度的图像配准方法[J].中国图象图形学报,2007,12(7):1291-1295. 被引量:10
  • 3李光鑫,王珂,张立保.加权多分辨率图像融合的快速算法[J].中国图象图形学报,2005,10(12):1529-1536.
  • 4SHUM H Y, SZELISKI R. Construction and Refinement of Panoramic Mosaics with Global and Local Alignment [ C ] l/Proceedings of 6th International Conference on Computer Vision. Bombay, India: [ s. n. ], 1998: 953 -958.
  • 5UYTFENDAELE M. Eliminating Ghosting and Exposure Artifacts in Image Mosaics [ C ] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii: [ s. n. ], 2001 : 509-516.
  • 6PEREZ P, GANGNET M, Blake A. Poisson Image Editing [J]. ACM Transactions on Graphics, 2003, 22 (3) : 313-318.
  • 7BURT P J, ADELSON E H. A Muhiresolution Spline with Application to Image Mosaics[J]. ACM Transactions on Graphics, 1983, 2(4) : 217-236.
  • 8PELEG S. Mosaicing on Adaptive Manifolds [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (10) - 1144-1154.
  • 9DAVI J. Mosaics of Scenes with Moving Objects [C]// Proceedings of 1998 IEEE Computer Society Conferende on Computer Vision and Pattern Recognition. Santa Barbara, USA: [s. n. ] , 1998: 354-360.
  • 10DUPLAQUET M L. Building Large Image Mosaics with Invisible Seam-lines [ C ]// Proceedings of SPIE Aero- sense. Orlando, Florida: [ s. n. ] , 1998 : 369-377.

共引文献142

同被引文献37

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部