期刊文献+

结合LBP和SVM的视频表情识别方法 被引量:9

Video expression recognition method combining LBP and SVM
下载PDF
导出
摘要 为了提高视频表情实时分类的识别率和实时性,提出LBP特征结合SVM进行决策表情分类的方法。首先获取视频流中的图像并进行预处理,然后使用LBP算子检测人脸,通过多级级联回归树模型对人脸68个关键点进行训练,分别记录表情特征,最后利用SVM训练表情识别模型并预测表情。实验采用Helen dataset作为训练集,CK+数据库作为测试集,平均识别率达到了86.2%,实时性也达到了平均20帧/s。实验结果表明,该方法性能优越,提高了算法的识别率和鲁棒性,同时保证了算法的实时性。 In order to improve the real-time recognition rate and real-time performance of video expression classification, LBP(Local Binary Pattern) feature combined with SVM(Support Vector Machine) for decision expression classification is proposed. Firstly, the image in the video stream is captured and preprocessed. Then, the LBP operator is used to detect the face. The 68 key points of the face are trained by the multi-level cascaded regression tree model. The facial expression features of each facial expression are recorded respectively. Finally, it uses SVM to train facial expression recognition models and predict facial expressions. The experiment uses Helen dataset as training set and CK + database as test set. The average recognition rate reaches 86.2% and the real-time performance reaches an average of 20 frames/s. The experiment shows that this method has superior performance, improves the recognition rate and robustness of the algorithm, and ensures the real-time performance of the algorithm.
作者 姚丽莎 徐国明 房波 何世雄 周欢 YAO Lisha;XU Guoming;FANG Bo;HE Shixiong;ZHOU Huan(Institute of Information and Software,Anhui Xinhua University,Hefei 230088,China)
出处 《山东理工大学学报(自然科学版)》 CAS 2020年第4期67-72,共6页 Journal of Shandong University of Technology:Natural Science Edition
基金 安徽省教育厅科技项目(KJ2018A0587) 安徽省质量工程建设项目(2018jyssf111) 安徽新华学院校级重点科研项目(2018zr006)。
关键词 表情识别 视频 LBP SVM facial expression recognition video LBP SVM
  • 相关文献

参考文献4

二级参考文献26

  • 1刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 2谭华春,章毓晋.基于人脸相似度加权距离的非特定人表情识别[J].电子与信息学报,2007,29(2):455-459. 被引量:8
  • 3M Lyons,J Budynek,S Akamastu.Automatic classification of single facial images[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1999,21(12):1357-1362.
  • 4Z Wen,T Huang.Capturing subtle facial motions in 3D face tracking[C].IEEE Int'l Conf on Computer Vision,Nice,France,2003.
  • 5B Fasel,J Luettin.Automatic facial expression analysis:A survey[J].Pattern Recognition,2003,36(1):259-275.
  • 6Y Wang,H Ai,B Wu,et al.Real time facial expression recognition with AdaBoost[C].Int'l Conf on Pattern Recognition,Cambridge,UK,2004.
  • 7S U Jung,D H Kim,K H An,et al.Efficient rectangle feature extraction for real-time facial expression recognition based on AdaBoost[C].In:Proc of IEEE/RSJ Int'l Conf on Intelligent Robots and Systems.Piscataway,NJ:IEEE Press,2005.1941-1946.
  • 8M S Bartlett,G Littlewort,M Frank,et al.Recognizing facial expression:Machine learning and application to spontaneous behavior[C].IEEE Conf on Computer Vision and Pattern Recognition,San Diego,CA,2005.
  • 9P Viola,M Jones.Robust real-time object detection[R].Cambridge Research Laboratory,Tech Rep:CRL 2001/01,2001.
  • 10R E Schapire,Y Singer.Improved boosting algorithms using confidence-rated predictions[J].Machine Learning,1999,37(3):297-336.

共引文献66

同被引文献76

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部