期刊文献+

阈上电离谱与双色激光场频率的关系 被引量:3

Dependence of Above-Threshold Ionization Spectra on Frequencies of Two-Color Laser Fields
原文传递
导出
摘要 基于非微扰量子电动力学的频域理论,研究了原子在不同频率双色激光场中的阈上电离过程。当两个激光场的频率均远低于原子电离势时,阈上电离谱来自大量通道的干涉结果,两个激光场在电离过程中起到相同的作用。随着激光频率的增加,阈上电离谱逐渐呈现多平台结构,不同平台对应电子吸收不同高频光子的过程。当一个激光场的单个光子能量远大于原子电离势时,两个激光场在电离过程中起到不同的作用,高频激光场决定原子的电离概率,低频激光场决定原子阈上电离谱每个平台的宽度,且平台宽度可以很好地用能量守恒公式给出。 Based on the frequency-domain theory in nonperturbative quantum electrodynamics,we investigate the above-threshold ionization of an atom exposed to two-color laser fields of different frequencies.As both the frequencies of two laser fields are lower than the ionization potential of the atom,the above-threshold ionization spectrum comes from quantum interference among many ionization channels,and the two laser fields play same roles in the above-threshold ionization process.As the frequency of one of the two laser fields increases,the abovethreshold ionization spectrum shows a multiplateau structure gradually,which is from the contribution of atoms absorbing different photons of high-frequency laser field.As the frequency of one of the two laser fields is much higher than the atomic ionization potential,the two laser fields play different roles in the above-threshold ionization process,where the high-frequency laser field may determine the ionization probability and the low-frequency laser field may determine the width of each plateau that can be predicted by the energy conservation relationship.
作者 金发成 杨慧慧 张桐 陈雨欣 Jin Facheng;Yang Huihui;Zhang Tong;Chen Yuxin(Faculty of Science,Xi'an Aeronautical University,Xi'an,Shaanxi 710077,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第3期67-72,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(11804264,11947080) 大学生创新创业训练计划(S201911736023,DCX2019043) 西安航空学院校级科研基金(2018KY0207) 校级教学质量工程项目(19ZLGC5024)。
关键词 原子与分子物理学 阈上电离 频域理论 双色激光场 原子电离谱 atomic and molecular physics above-threshold ionization frequency-domain theory two-color laser fields atom ionization spectrum
  • 相关文献

参考文献7

二级参考文献62

  • 1Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389.
  • 2Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127.
  • 3McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595.
  • 4Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227.
  • 5Chen J, Zeng B, Liu X, Cheng Y, Xu Z Z 2009 New J. Phys. 11 113021.
  • 6田原野, 郭福明, 杨玉军 2013 物理学报 62 073202.
  • 7Brabec T, Krauze F 2000 Rev. Mod. Phys. 72 545.
  • 8Posthumus J H 2004 Rep. Prog. Phys. 67 623.
  • 9Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E, Silvestri S D 2001 Nature 414 182.
  • 10Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M, Krausz F 2003 Phys. Rev. Lett. 91 253004.

共引文献28

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部