期刊文献+

光束会聚型亚波长光栅1×4功率分束器 被引量:2

Sub-Wavelength Grating 1×4 Power Splitter with Beam Convergence
原文传递
导出
摘要 提出一种具有光束会聚功能的单层亚波长光栅结构,该结构能实现光束会聚及四路分光。利用严格耦合波分析法和波前相位控制原理设计并优化该亚波长光栅结构,并给出具体相位设计规则。基于有限元软件COMSOL对其进行仿真分析,结果表明,当波长为1550nm的横磁(TM)偏振光入射时,该结构可实现四路分束,每束光功率都相等且可实现光束会聚,经计算得到总体透射率为92.670%。该亚波长光栅结构有望在光通信集成以及空间光耦合等领域得到重要应用。 This paper proposes a single-layer sub-wavelength grating structure with beam convergence function and four-way beam splitting.The structure is designed and optimized using a rigorous coupled-wave analysis method and wavefront phase control principle,and the specific phase design rules are given.The simulation results of the structure using finite element software COMSOL show that the structure can realize four-way splitting under irradiation of transverse magnetic(TM)polarizes light at 1550 nm wavelength.Moreover,the optical power of each beam is equal and beam convergence is realized.The calculated total transmittance is 92.670%.Thus,the subwavelength grating structure can be applied in the important fields of optical communication integration and spatial optical coupling.
作者 黄诚 白成林 房文敬 范鑫烨 姜夕梅 Huang Cheng;Bai Chenglin;Fang Wenjing;Fan Xinye;Jiang Ximei(School of Physics Science and Information Technology,Liaocheng University,Liaocheng,Shandong 252000,China;Shandong Provincial Key Laboratory of Optical Communication Science and.Technology,Liaocheng,Shandong 252000,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第3期85-91,共7页 Laser & Optoelectronics Progress
基金 国家重点研究发展计划(2016YFB0402105)。
关键词 光栅 亚波长光栅 会聚光束 功率分束器 波前相位控制原理 光学器件 gratings sub-wavelength grating beam convergence power splitter wavefront phase control principle optical device
  • 相关文献

参考文献4

二级参考文献38

  • 1郑改革,詹煜,曹焜,徐林华.亚波长金属光栅结构的制备与矢量衍射理论分析[J].发光学报,2013,34(7):935-939. 被引量:4
  • 2梁继然,胡明,窦雁巍.电化学腐蚀多孔硅表面形貌的结构特性[J].纳米技术与精密工程,2006,4(2):162-166. 被引量:5
  • 3陈庆东,张宇翔,郭敏,王俊平,高哲,李红菊.多孔硅层的剥离及反射率研究[J].人工晶体学报,2007,36(6):1435-1439. 被引量:1
  • 4Wang L, An J, Wu Y, et al.. A compact and low-loss lx 8 optical power splitter using silica-based PLC on quartz substrate [J]. Opt Commun, 2014, 312: 203-209.
  • 5Mustafa H, Xiao F, Alameh K. Reconfigurable optical power splitter/combiner based on opto-VLSI processing[J]. Opt Express, 2011, 19(22): 21890-21897.
  • 6C J Chang-Hasnain, W J Yang. High-contrast gratings for integrated optoelectronics[J]. Advances in Optics and Photonics, 2012, 4(3): 379-440.
  • 7Karagodsky V, Chang-Hasnain C J. Physics of near-wavelength high contrast gratings[J]. Opt Express, 2012, 20(10): 10888- 10895.
  • 8Karagodsky V, Sedgwick F G, Chang-Hasnain C J. Theoretical analysis of sub-wavelength high contrast grating reflectors [J]. Opt Express, 2010, 18(16): 16973-16988.
  • 9Fattal D, Li J, Peng Z, et al.. Flat dielectric grating reflectors with focusing abilities[J]. Nature Photonics, 2010, 4(7): 466- 470.
  • 10Lu F, Sedgwick F G, Karagodsky V, et al.. Planar high-numerical-aperture low-loss focusing reflectors and lenses using sub-wavelength high contrast gratings[J]. Opt Express, 2010, 18(12): 12606-12614.

共引文献19

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部