摘要
利用经典力学的拉格朗日方法,分别讨论了静平衡的条件和连续介质动力学.利用哈密顿方法,介绍了相空间中独特的平衡点以及适用于统计力学的稳定系综分布.这些例子表明:在分析力学的框架内,加速度概念已经去魅,所谓的“平衡态”也具有不同于牛顿方法的实现方式.
By using the Lagrangian approach to classical mechanics, we investigate the condition of static equilibrium and the continuum dynamics, respectively.By using Hamiltonian approach, we introduce the distinct point of equilibrium as well as the stable ensemble distribution, which makes sense in the scope of statistical mechanics, in the phase space.The examples show that the concept of acceleration is disenchanted in the framework of analytical mechanics.Also, the so-called "equilibrium states" are found to be realized by the different ways from the case of Newtonian approach.
作者
张小兵
ZHANG Xiao-bing(College of Physics,Nankai University,Tianjin 300071,China)
出处
《大学物理》
2020年第5期1-3,19,共4页
College Physics
关键词
拉格朗日方法
哈密顿方法
广义加速度
平衡态
Lagrangian and Hamiltonian approaches
generalized acceleration
equilibrium state