期刊文献+

驻波声场中悬浮临界密度及稳定性研究 被引量:2

Study of the critical density and stability of suspension in standing wave sound field
下载PDF
导出
摘要 本文以声场中物体为研究对象,理论上得到行波和驻波场中的声辐射压力方程.在驻波声场中引入临界悬浮密度概念,可作为物体能否在非线性声场中悬浮的判据,同时给出谐振腔移动速度的最大范围.更进一步,以实验参数作为数值计算的输入来指导实验,并结合实验结果讨论了驻波声场中样品密度和大小、发射面和反射面形状以及两者之间的距离、反射面的尺寸等因素对物体悬浮稳定性的影响,发现当物体尺寸和密度确定时,调控好谐振腔的长度,增加波腹处的声压是提升声悬浮稳定性的有效手段. In this paper, the object in the sound field is studied, and the acoustic radiation pressure equation is theoretically derived both in the travelling wave and the standing wave. The concept of the critical suspension density is introduced into the standing wave sound field, which should be used as a criterion for suspension in a nonlinear sound field. At the same time, the maximum range of Resonant cavity’s movement speed is given. Furthermore, by the combination of numerical computations and experimental results, the influence of the density and the size of the sample in the standing wave sound field, the shape of the emitting surface and the reflecting surface, the distance between these two surface, and the size of the reflecting surface on the suspension stability are investigated. It is found that when the size and the density of the object are determined, adjusting the length of the resonant cavity and increasing the sound pressure at the antinode are effective means to improve the acoustic suspension stability.
作者 金硕 严琪琪 李成翊 张兆航 黄安平 JIN Shuo;YAN Qi-qi;LI Cheng-yi;ZHANG Zhao-hang;HUANG An-ping(School of Physics,Beihang University,Beijing 100191,China)
出处 《大学物理》 2020年第5期20-26,共7页 College Physics
基金 北京航空航天大学2019-2022年教育教学改革培育项目(大类招生环境下物理专业课程改革与建设) 北京航空航天大学双百优质课程项目(A级理论力学ZG211J1771) 北京航空航天大学研究型示范课(物理先导课) 北京航空航天大学2018年重点教改项目(物理本科毕业设计新模式探索与实践)资助。
关键词 驻波声场 悬浮 稳定性 声压 standing wave sound field suspension stability sound pressure
  • 相关文献

参考文献3

二级参考文献16

  • 1[1] KING L B. On the acoustic radiation pressure on sphere. Pro.R.Soc.Lond,1934,A147,211-240.
  • 2[2] RUDNICK J. Measurements of the acoustic radiation pressure on a sphere in standing wave field. J.Acoust.Soc.Am.,1951,23:633~634.
  • 3[3] WESTERVELT P J. The theory of steady forces caused by sound waves. J.Acoust.Soc.Am, 1951,23:312~315.
  • 4[4] VAINSHTEIN P,FICHMAN M,PNUELI D. On the drift of aerosol particles in sonic fields. J.Aerosol Sci, 1992,23:631~637.
  • 5[5] LIGHTHILL J. Acoustic streaming. J.Sound Vib,1978,61:391~41.
  • 6[1]Brandt E H.Nature,2001,413:474
  • 7[2]Xie W J,Wei B B.Appl.Phys.Lett.,2001,79:81
  • 8[3]King L V.Proc.Roy.Soc.,1934,A147:212
  • 9[4]Weber J K R et al. Rev.Sci.Instrum.,1994,65:456
  • 10[5]Apfel E,Zheng Y,Tian Y.J.Acoust.Soc.Am.,1999,105:L1

共引文献33

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部