期刊文献+

Impact of adaptive immune response and cellular infection on delayed virus dynamics with multi-stages of infected cells

原文传递
导出
摘要 In this investigation,we propose and analyze a virus dynamics model with multi-stages of infected cells.The model incorporates the effect of both humoral and cell-mediated immune responses.We consider two modes of transmissions,virus-to-cell and cell-to-cell.Multiple intracellular discrete-time delays have been integrated into the model.The incidence rate of infection as well as the generation and removal rates of all compartments are described by general nonlinear functions.Wc derive five threshold parameters which determine the existence of the equilibria of the model under consideration.A set of conditions on the general functions has been established which is sufficient to investigate the global stability of the five equilibria of the model.The global asymptotic stability of all equilibria is proven by utilizing Lyapunov function and LaSalle’s invariance principle.The theoretical results are illustrated by numerical simulations of the model with specific forms of the general functions.
出处 《International Journal of Biomathematics》 SCIE 2020年第1期79-140,共62页 生物数学学报(英文版)
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部