期刊文献+

广义光滑模和广义凸性模的性质 被引量:2

Properties of Generalized Modulus of Smoothness and Generalized Modulus of Convexity
下载PDF
导出
摘要 基于广义光滑模的定义,研究了Banach空间下的广义光滑模与t之间的关系,证明了一致非方的三个等价条件以及关于广义光滑模的四个等价命题。此外证明了Banach空间和超自反的Banach空间分别满足limt→0*ρX^α*(t)/t<1/2和ρX^α*(t)<α+3/2*t*ω*(x)-1,t·ω*(X)≤1的条件下具有一致正规结构,ρX^α*(t)和ω(X)分别为广义光滑模和弱正交系数。最后给出了Vx,y∈X当‖x‖^2+‖y‖^2=2时关于广义凸性模的一个不等式。 Based on the definitions of generalized modulus of smoothness,the relation between generalized modulus of smoothness and t in the Banach spaces is studied,which proves three equivalent conditions of uniform normal structure and four equivalent propositions of generalized modulus of smoothness.In addition,which is proved that the Banach space and the super reflexive Banach space satisfy conditions of limt→0*ρX^α*(t)/t<1/2andρX^α*(t)<α+3/2*t*ω*(x)-1,t·ω*(X)≤1 have uniform normal structure.ραX(t)andω(X)are generalized modulus of smoothness and weak orthogonal coefficient respectively.Finally,which gives an inequality about the generalized convex modulus when‖x‖^2+‖y‖^2=2,Vx,y∈X.
作者 赵亮 於杨 ZHAO Liang;YU Yang(School of Sciences,Harbin University of Science and Technology,Harbin 150080,China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2020年第1期144-148,共5页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11571085) 黑龙江省教育厅科学技术研究项目(12541145)。
关键词 广义光滑模 广义凸性模 一致非方 一致正规结构 generalized modulus of smoothness generalized modulus of convexity uniformly nonsquare uniform normal structure
  • 相关文献

参考文献7

二级参考文献54

  • 1左红亮,杨敏.Banach空间的几何常数与一致正规结构[J].河南师范大学学报(自然科学版),2011,39(3):16-18. 被引量:2
  • 2GAO J. Normal Structure and Modulus of U-convexity in Banach space[ C ]//Function Spaces, Differential Operators and Nonlinear Analysis, New York, 1996 : 195 - 199.
  • 3GAO J. The W * -convexity and Normal Structure in Banach Spaces [ J]. Appl. Math. Lett., 2004,17 : 1381 - 1386.
  • 4GAO J. On Some Geometric Parameters in Banach spaces [ J ],J. Math. Anal. Appl. ,2007,1:114 - 122.
  • 5GAO J. A Pythagorean Approach in banach Space[J]. J. Inequal. Appl., (2006), Article ID 94982.
  • 6GOEBEL K, DIRK W A. Topices in Metric Fixed Point Theory [ M]. Cambridge:Cambridge Univ. Press, 1990.
  • 7JIMEBEL-MELADO A, LLORENS-FUSTER E,SAEJUNG S. The Von Neuman-jordan Constant, Weak Orthogonality and Normal Structure in Banach Spaces [ J ]. Rroc. Amer. Math. Soc. , 2006, 134(2) :355 -364.
  • 8DATO M, MALIGEANDA L, TAKAHASHI Y. On James and Jordan-yon Neumann Costants and The Normal Structure Coefficient of Banach Space[ J]. Studia Math. ,2001,144:275 - 295.
  • 9KIRK W A. A Fixed Point Theorem for Mappings which Do not Increase distances [ J ]. Amer. Math. Monthly, 1965, 72:1004 - 1006.
  • 10MAZCUAN-NAVARRO E M. Banach Spaces Properties Sufficient for Normal Structure [ J ]. J. Math. Anal. Appl. , 2008,337 : 197 -218.

共引文献26

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部