摘要
针对微陀螺仪灵敏度与带宽的制约问题,通过一种新型的生物进化遗传算法,提出了一种基于灵敏度和带宽最优化的优化设计方法.编写了多目标遗传算法的相关程序,该方法基于特征提取确定约束条件,以微陀螺振动系统振子质量比、结构频率比以及弹性梁刚度系数比为设计变量,灵敏度与带宽为设计目标,采用多目标遗传算法对模型进行优化.以双检测单驱动三自由度微机械陀螺仪为研究对象进行分析与优化,获得的灵敏度和带宽与二次序列规划算法(SQP)相比分别提升了18 dB和2 175 Hz.结果表明,采用该方法对微陀螺仪的性能进行分析和优化,能在大大提高优化效率的同时有效提高灵敏度与带宽,达到提升多自由度微陀螺性能的目的,为微机械振动陀螺仪的优化设计提供了新的有效方法.
Aiming at the limitation of sensitivity and bandwidth of micro-gyroscope,an optimization design method based on sensitivity and bandwidth optimization is proposed through a novel evolutionary genetic algorithm. The relevant program of multi-objective genetic algorithm is compiled. The constraints are determined based on feature extraction. The model is optimized by multi-objective genetic algorithm with the design variables of mass ratio of oscillator,frequency ratio of structure and stiffness coefficient ratio of elastic beam,sensitivity and bandwidth. The sensitivity and bandwidth of the double-detection single-drive three-degree-of-freedom micromachined gyroscope are improved by 18 dB and 2 175 Hz,respectively,compared with the quadratic sequence programming(SQP). The results show that this method can improve the sensitivity and bandwidth of the micro-gyroscope while greatly improving the optimization efficiency,and achieve the purpose of improving the performance of the multi-degree-of-freedom micro-gyroscope. It provides a new and effective method for the optimization design of the micro-mechanical vibration gyroscope.
作者
郝淑英
朱玉伦
孟思
张琪昌
刘君
HAO Shu-ying;ZHU Yu-lun;MENG Si;ZHANG Qi-chang;LIU Jun(School of Mechanical Engineering,Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,Tianjin University of Technology,Tianjin 300384,China;Tianjin Key Laboratory of Nonlinear Dynamics and Control,Tianjin University,Tianjin 300072,China;Zhengzhou Yutong Heavy Industries Co.,Ltd.,Zhengzhou 450000,China)
出处
《天津理工大学学报》
2020年第2期1-6,共6页
Journal of Tianjin University of Technology
基金
国家重点研发计划(2018YFB0106200).
关键词
多自由度微陀螺
优化设计
特征提取
遗传算法
multi-degree-of-freedom micro-gyroscope
optimal design
feature extraction
genetic algorithm