期刊文献+

基于运动预测的优化光流目标跟踪算法 被引量:3

Optimized optical flow target tracking algorithm based on motion prediction
下载PDF
导出
摘要 为提高光流法在检测追踪运动目标时的效率与准确性,提出了一种基于运动预测改进的优化光流目标跟踪算法。该算法通过光流法查询运动点,采用均值漂移聚类得出运动物体质心,通过随机选取运动目标部分角点并查询运动信息,经卡尔曼滤波预测质心运动信息,查询预测区域信息,降低算法的复杂度并提升效率和准确性。实验结果表明:在监控视频中对车辆与行人的追踪平均准确率达到了68.7%与78.5%,每秒能够处理31.5帧与34.7帧;通过对比得出,优化的光流算法有效地提高了检测追踪监控视频中运动目标的效率与准确率。 In order to improve the efficiency and accuracy of optical flow method in detecting and tracking moving targets,an improved optical flow target tracking algorithm based on improved motion prediction is proposed.The optical flow method is used to query the motion points,and the mean drift clustering is used to obtain the centroid of the moving object.Randomly selecting the corner points of the moving target and querying the motion information,the centroid motion information is predicted by the Kalman filter,and the predicted region information is queried,and efficiency and accuracy are increased.The experimental results show that the average accuracy of tracking vehicles and pedestrians in surveillance video reaches 68.7%and 78.5%,and it can process 31.5 frames and 34.7 frames per second.Compared with the other two algorithms,the optimized optical flow algorithm effectively improves the efficiency and accuracy of detecting and tracking moving targets in the video.
作者 高屾 朱成杰 GAO Shen;ZHU Chen-jie(Anhui University of Science and Technology,Huainan 232001 China)
出处 《新余学院学报》 2020年第2期19-24,共6页 Journal of Xinyu University
基金 安徽省光电感测工程技术研究中心开放基金项目“遥感影像地物识别与提取技术应用研究”(01001567-201601)。
关键词 目标跟踪 计算机视觉 光流法 均值漂移聚类 卡尔曼滤波 target tracking computer vision optical flow method mean shift clustering Kalman filter
  • 相关文献

参考文献7

二级参考文献59

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2陈凤,李金宗,黄建明,李冬冬.提高地震剖面图像信噪比的二维沿层滤波方法[J].哈尔滨工业大学学报,2005,37(5):667-669. 被引量:1
  • 3胡社教,葛西旺,陈宗海.基于角点特征的KLT跟踪全景图像拼接算法[J].系统仿真学报,2007,19(8):1742-1744. 被引量:17
  • 4CHRISTENSEN G E, JOHNSON H J. Image consistent reg- istration[J]. IEEE Transactions oil Medical hnaging, 2004,20 (7) :568-582.
  • 5SHUM H Y, SZELISKI R. Construction of panoramic image mosaics with global and local alignment [j]. International Journal of Computer Vision, 2000, 16(1 ) :63-84.
  • 6BLACK M. JEPSON A. Eigen-tracking: robust malching and tracking of articulated objects using a view-based rep- resentation [J]. International Journal of Computer Vision, 1998,36(2) : 101-130.
  • 7HAGER G D, BELHUMEUR P N. Efficient region tracking with parametric models of geometry and illumination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(10) : 1025-1039.
  • 8LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[J]. Internation- al Joint Conference on Artificial Intelligence, 1981 (81): 674-679.
  • 9BOUGUETJ Y. Pyramidal implementation of tile lucas kanade feature tracker description of the algorithm [M]. Technical Report, Intel Microprocessor Research Labs, 2000.
  • 10SHI J, TOMASI C. Good features to track[C]. Conference on Computer Vision and Pattern Recognition, 1994:593-600.

共引文献124

同被引文献17

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部