期刊文献+

深度预警网络的车辆识别与检测 被引量:2

Vehicle recognition and detection based on deep early warning network
下载PDF
导出
摘要 针对驾驶过程中目标车辆实时检测准确度问题,提出一种基于YOLO和Darknet-19等融合式算法设计的深度预警网络,旨在实现对目标车辆的特征提取。网络基于车载单目摄像机拍摄的实时场景照片进行测试数据集的制作,预训练采用PASCAL VOC 2007数据集。应用于夜间可见度低的情况下,网络测试结果较YOLO网络准确率提高了4.89%,召回率提高了18.02%;应用于白天可见度高的情况下,准确率提高了8.72%,召回率提高了7.79%;平均检测时间也有所下降,实现了目标车辆检测准确度及速率的提高。 Aiming at the problem of real-time detection precision of target vehicle in driving process,a deep early warning network was designed based on the YOLO and Darknet-19 fusion algorithm,which will be mainly for the feature extraction of target vehicle.The network was based on the real-time scene photos taken by the vehicle monocular camera to produce the test data set.The PASCAL VOC 2007 data set was used for pre-training.Compared with YOLO Network which is commonly used in target detection at present,the accuracy and recall rate of YOLO Network are improved by 4.89%and 18.02%respectively when used in low night visibility.When applied to the situation of high daytime visibility,the precision and recall rate are increased by 8.72%and 7.79%,respectively.The average detection time is also reduced,which achieves the improvement of the detection precision and speed of the target vehicle.
作者 赵栓峰 许倩 丁志兵 黄涛 ZHAO Shuanfeng;XU Qian;DING Zhibing;HUANG Tao(College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)
出处 《中国科技论文》 CAS 北大核心 2020年第3期347-353,共7页 China Sciencepaper
基金 陕西省教育厅2019年度专项科学研究计划项目(19JC028) 陕西省重点研发计划项目(2018ZDCXL-G-13-9) 陕西省技术创新引导专项基金资助项目(2019QYPY-055)。
关键词 计算机技术应用 网络融合 目标检测 车辆识别 深度预警网络 computer technology application network fusion target detection vehicle recognition deep early warning network
  • 相关文献

参考文献8

二级参考文献52

  • 1崔扬,周泽魁.基于Fisher准则的分类器在皮革正反面分类中的应用[J].江南大学学报(自然科学版),2004,3(4):374-377. 被引量:1
  • 2陈国良,韩文廷.人工神经网络理论研究进展[J].电子学报,1996,24(2):70-75. 被引量:20
  • 3孙宁,孙劲光,孙宇.基于神经网络的语音识别技术研究[J].计算机与数字工程,2006,34(3):58-61. 被引量:9
  • 4杨国亮,王志良,牟世堂,解仑,刘冀伟.一种改进的光流算法[J].计算机工程,2006,32(15):187-188. 被引量:27
  • 5Vinjie W E, Gallant J L. Sparse coding and decorrela tion in primary visual cortex during nature vision [J]. Science, 2000, 287(5456): 1273 1276. (in Chinese).
  • 6Michael E. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Pro cessing [M]. Berlin: Springer, 2010.
  • 7Wright J, Allen Y, Ma Yi, et al. Robust face recogni tion via sparse representation [J]. IEEE Trans Pattern Anal Mach Intell, 2009, 31(2): 210-227.
  • 8Yang Jianchao, Wright J, Huang T, et al. Image su- per-resolution as sparse representation of raw image patches [C]//IEEE. 2008 IEEE Conference on Com- puter Vision and Pattern Recognition. New York: Cur- ran Associates Incorporated, 2008: 1-8.
  • 9Jia Xu, Lu Huchuan, Yang Minghsuan. Visual track- ing via adaptive structural local sparse appearance model [C]//IEEE. 2012 IEEE Conference on Computer Vi sion and Pattern Recognition. New Jersey: IEEE press, 2012: 1822-1829.
  • 10Mairal J, Bach F, Ponce J, et al. Non-local parse mod- els for image restoration [C]//IEEE. 2009 IEEE 12th International Conference on Computer Vision. New Jersey: IEEE press, 2009: 2272-2279.

共引文献364

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部