期刊文献+

交叉型裂纹扩展的近场动力学分析 被引量:1

Peridynamics analysis of intersecting cracks propagation
下载PDF
导出
摘要 为了研究交叉型裂纹的扩展模式及主次裂纹长度比值对裂纹扩展模式的影响,基于近场动力学(peridynamics,PD)理论建立模型,在本构方程中引入长程力作用,采用体积修正提高计算精度。基于该数学模型编写Fortran程序对含交叉型裂纹二维板的裂纹扩展进行数值模拟。以T形交叉型裂纹为例,分析拉伸载荷作用下主次裂纹长度比值对裂纹扩展的影响,计算无量纲应力强度因子并与解析解进行对比。结果表明:近场动力学方法可以很好地对T形裂纹的结构裂纹扩展进行模拟;主次裂纹长度比值增大,裂纹扩展速率有减小的趋势,并且由次裂纹引发的裂纹扩展夹角有增大的趋势。 To research the influence of propagation mode and ratio of main and secondary crack lengths on the intersecting cracks,modeling was established based on the peridynamics(PD)theory.The long range force is introduced into the constitutive equation,and the accuracy of the calculation is improved by interface correction and volume correction.Based on this model,the numerical simulation of two-dimensional plate crack growth with intersecting cracks was carried out,and the structural crack growth of T-shaped cracks was simulated.The different effects of length ratio of main crack and secondary crack on crack growth under tensile conditions are analyzed.Nondimensional stress intensity factors were calculated and compared with the analytical solutions.Peridynamics theoretical method can well simulate the structural crack growth of T-shaped cracks.When the ratio of primary to secondary crack length increases,the crack growth rate tends to decrease and the crack growth angle caused by secondary crack tends to increase.
作者 王通 焦学健 李丽君 杜建邦 马银生 WANG Tong;JIAO Xuejian;LI Lijun;DU Jianbang;MA Yinsheng(School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, Shangdong 255049, China)
出处 《中国科技论文》 CAS 北大核心 2020年第3期354-359,共6页 China Sciencepaper
基金 国家自然科学基金资助项目(51505261) 山东省自然科学基金资助项目(ZR2015AM013)。
关键词 近场动力学 交叉型裂纹 数值模拟 本构方程 裂纹扩展模式 peridynamics(PD) intersecting crack numerical simulation constitutive equation crack propagation pattern
  • 相关文献

参考文献2

二级参考文献23

  • 1沈峰,章青,黄丹,赵晶晶.基于近场动力学理论的混凝土轴拉破坏过程模拟[J].计算力学学报,2013,30(S1):79-83. 被引量:29
  • 2王庆丰,黄小平,崔维成.不同位置裂纹间的互相作用及其影响规律的有限元分析[J].江苏科技大学学报(自然科学版),2006,20(1):16-19. 被引量:7
  • 3解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用.北京:科学出版社,2009.
  • 4Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Num Meth Eng, 1999, 45:601-620.
  • 5Belytschko T, Moes N, Usui S, et al. Arbitrary discontinuities in finite elements. Int J Num Meth Eng, 2001, 50:993-1013.
  • 6Daux C, Moes N, Dolbow J, et al. Arbitrary branched and intersecting cracks with the extended finite element method. Int J Num Meth Eng, 2000, 48:1741-1760.
  • 7Strouboulis T, Copps K, Babushka I. The generalized finite element method: an example of its implementation and illustration of its performance. Int J Num Meth Eng, 2000, 47:1401-1417.
  • 8Babuska I, Banerjee U, Osborn J E. On the principles for the selection of shape functions for the Generalized Finite Element Method. Comput Meth Appl Mech Eng, 2002, 191(49-50): 5595-5629.
  • 9Strouboulis T, Zhang L, Babushka I. Generalized finite element method using mesh-based handbooks: Application to problems in domains with many voids. Comput Meth Appl Mech Eng, 2006,195:852-879.
  • 10Ouchterlong F. Stress intensity factors for the expansion loaded star crack. Eng Fracture Mech, 1976, 8:447448.

共引文献18

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部