摘要
石油对保障国家能源安全发挥着重要作用,科学预测未来中国石油需求量,对中国能源政策制定具有重要意义。结合灰色关联分析与ARIMA-BP神经网络组合模型,选取1999-2018年中国GDP、国际石油价格、单位GDP能耗、产业结构、城镇化率和石油生产量等6个驱动变量数据,对中国2020-2030年石油需求进行情景预测。结果表明:选取的驱动变量与中国石油需求具有较高的关联性,且组合模型较单一模型预测精度高。2020-2030年中国石油需求量和进口量不断增加,但增长幅度逐渐减缓。3种情景下2020年、2025年和2030年预测的石油需求量均值分别为67 577.03万t、73 227.25万t和76 081.55万t;2020-2030年预测的平均对外依存度为76.19%,远超过50%的国际警戒线。中国石油供需矛盾将更加尖锐,据此提出针对性的政策建议。
Oil plays an important role in ensuring national energy security. It is of great significance for China’s energy policy-making to predict the future oil demand scientifically. Combined with the grey correlation analysis and combination model of ARIMA-BP neural network,data on six driving variables of China’s GDP,international oil price,energy consumption per unit GDP,industrial structure,urbanization rate and oil production in 1999-2018 were selected to predict China’s oil demand under different scenarios in 2020-2030. The results show that the selected driving variables are highly correlated with China’s oil demand,and the combined model is more accurate than the single model. From 2020 to 2030,China’s oil demand and import will continue to increase,but the growth rate will gradually slow down. Under the three scenarios,the predicted average oil demand in 2020,2025 and 2030 will be 675.7703 million tons,732.2725 million tons and 760.8155 million tons,respectively;the predicted average external dependence in 2020-2030 will be 76.19%,far exceeding the international warning line of 50%. The contradiction between China’s oil supply and demand will be more acute,and accordingly,some policy suggestions were put forward.
作者
郑明贵
李期
Zheng Minggui;Li Qi(Research Center of Mining Trade&Investment,Jiangxi University of Science and Technology,Ganzhou Jiangxi 341000,China;The School of Management,University of Science and Technology of China,Hefei 230026,China)
出处
《地球科学进展》
CAS
CSCD
北大核心
2020年第3期286-296,共11页
Advances in Earth Science
基金
国家社会科学基金重点项目“中国战略性矿产资源国家安全评估与预警系统研究(2020-2050)”(编号:18AGL002)
国家自然科学基金重点项目“大数据环境下的评价理论、方法和应用”(编号:71631006)资助。