期刊文献+

一种基于加权网络拓扑权重的链路预测方法 被引量:12

Link Prediction Method Based on Weighted Network Topology Weight
下载PDF
导出
摘要 近年来,复杂网络中的链路预测问题受到越来越多的关注,链路预测的应用场景也越来越广泛,因此如何提高链路预测精度是一个重要问题。目前已提出了很多方法,其中加权相似性指标的预测方法取得了很好的效果。然而传统的加权网络链路预测方法仅考虑了链接的自然权重,忽略了链接的拓扑权重对预测精度的影响。因此,针对加权网络的链路预测,综合考虑网络中边的聚类和扩散特性并将其作为边的拓扑权重,提出了基于链接拓扑权重的WCD含权预测指标,包括WCD-CN,WCD-AA,WCD-RA和WCD-LP4个相似性指标。文中以Matlab为实验平台,在两个带权数据集(USAir,Bibble)和两个无权数据集(Pblogs,Dolphins)上进行实验,并以AUC作为评价指标。仿真结果表明,与基于自然权重的含权指标、基于簇系数的结构含权指标相比,所提算法具有更好的预测精度。 In recent years,with more and more attention drawning to link prediction in complex networks,and with the application of link prediction becoming increasingly extensive,a crucial question is raised on how to improve the accuracy of link prediction.Many proposals are made,among which the weighted similarity indices have already achieved a promising result.However,the traditional weighted network link prediction only considers the natural weight of the link neglects the influence of the topologi-cal weights on prediction accuracy.Therefore,aiming at the weighted networks,this paper takes the clustering and diffusion characteristics of edges into consideration and regard them as the topological weights of edges,and consequently recommended four similarity indices based on the topology weight of links,namely WCD-CN,WCD-AA,WCD-RA,and WCD-LP.This paper takes Matlab as the experimental platform and carries out experiments on two weighted datasets(USAir,Bibble)and two weightless datasets(Pblogs and Dolphins),in which AUC is used as the evaluation index.The results of the simulation indicate that compared with two weighted indices,which are based on natural weight and cluster coefficient respectively,the proposed algorithm has higher accuracy in prediction.
作者 袁榕 宋玉蓉 孟繁荣 YUAN Rong;SONG Yu-rong;MENG Fan-rong(College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;School of Computer,Network Space Security,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《计算机科学》 CSCD 北大核心 2020年第5期265-270,共6页 Computer Science
基金 国家自然科学基金(61672298,61873326,61373136,61802155) 江苏高校哲学社会科学研究重点项目(2018SJZDI142) 教育部人文社会科学研究规划基金(17YJAZH071)。
关键词 复杂网络 拓扑结构 链路预测 相似性指标 结构权重 Complex network Topological structure Link prediction Similarity index Structural weight
  • 相关文献

参考文献3

二级参考文献66

  • 1GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12.
  • 2SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386.
  • 3ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73.
  • 4POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87.
  • 5O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30.
  • 6LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304.
  • 7LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031.
  • 8CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101.
  • 9HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137.
  • 10GUIMERA R,SALES-PARDO M.Missing and spurious interactions and the reconstruction of complex networks[J].Proc Natl Sci Acad USA,2009,106(52):22073-22078.

共引文献251

同被引文献74

引证文献12

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部