期刊文献+

核等值:一种观察分数等值体系 被引量:2

Kernel equating: A framework of observed score equating
下载PDF
导出
摘要 核等值流程包括:预平滑、估计分数概率、连续化、等值、评估等值结果。该方法兼具线性等值与等百分位等值的优点,各环节扩展性与包容性较强;采用平滑与连续化处理,可降低等值随机误差;等值差异标准误等其所特有的概念为结果评估提供可靠的工具。连续化与带宽选择方法等因素均可影响其表现;基于核等值的新方法为等值发展提供了新颖的视角。未来可关注核等值体系的扩充与完善、流程的更新、等值方法的结合和比较等方向。 Kernel equating procedures include pre-smoothing, estimation of the score probabilities, continuization, equating, and evaluation of equating performance. By incorporating linear equating and equipercentile equating methods, kernel equating is more extensible and comprehensive. Pre-smoothing and continuization are distinctive features in kernel equating to reduce the standard error of equating. Standard error of the difference between equating functions are calculated as criterion for evaluating the performances of different kernel equatings. Continuization methods, bandwidth selection methods, etc., can affect the performance of kernel equating. New equating methods based on kernel equating provide an innovative perspective for researchers. Further researchers could focus on extending kernel equating framework by integrating other methods, updating smoothing procedures, and comparative studies.
作者 王少杰 张敏强 李拓宇 梁正妍 WANG Shaojie;ZHANG Minqiang;LI Tuoyu;LIANG Zhengyan(School of Psychology,South China Normal University,Guangzhou 510631,China)
出处 《心理科学进展》 CSSCI CSCD 北大核心 2020年第5期855-870,共16页 Advances in Psychological Science
基金 国家社会科学基金一般项目(BHA180141)资助。
关键词 核等值 连续化 带宽选择 等值新方法 kernel equating continuization bandwidth selection new equating methods
  • 相关文献

参考文献3

二级参考文献20

  • 1Holland P W, Rubin D B. Test Equating. New York:Academic, 1982.
  • 2Holland P W, Thayer D T. Notes on the use of log - hnear models for fitting discrete probability distributions (ETS TR - 87 - 79). Princeton, NJ: ETS, 1987,
  • 3Holland P W, Thayer D T. The kernel method of equating score distributions (ETS RR - 89 - 7). Princeton, NJ: ETS, 1989.
  • 4Holland P W, King B F, Thayer D T. The Standard error of equating for the kernel method of equating score distributions. ( EIS TR - 89 - 83). Princeton, NJ: EIS, 1989.
  • 5Liou M, Cheng P E. Asymptotic standard error of equipercentite equating. Journal of Educational and Behavioral Statistics, 1995,20:259 - 286.
  • 6Dorans N J. Recentering and Realigning the SAT score distributions:how and why. Journal of Educational Measurement,2002, 39:59 - 84.
  • 7Livingston S A. Small sample equatings with log-linear smoothing. Journal of Educational Measurement, 1993,30:23- 39.
  • 8Hanson B A. Testing for differences in test score distributions using log- linear models. Applied Measurement in Education, 1996,9:305- 321.
  • 9Livingston S A. An empirical tryout of kernel equating (ETS RR - 93 - 33). Princeton, NJ: ETS, 1993.
  • 10von Davier A A, Holland P W, Thayer D. The Kernel Method of Test Equating.New York: Springer- Verlag,2004.

共引文献19

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部