期刊文献+

变精度极大相容块粗糙集模型及其属性约简 被引量:4

Maximum Consistent Block Based Variable Precision Rough Set Model and Attribute Reduction
下载PDF
导出
摘要 主要研究不完备信息系统的属性约简问题。首先基于极大相容块构造乐观和悲观两种广义变精度粗糙集模型,分析两种模型之间的关系并研究其主要性质。在此基础上,定义乐观(悲观)β-下分布约简和β-上分布约简并且给出相应的判定定理,进而得到一种保持决策类上(下)近似分布不变的属性约简方法--布尔计算方法。这种构造极大相容块间的辨识矩阵的方法缩小了矩阵的规模,进而简化了计算属性约简的过程,从而能够有效地节省计算时间和存储空间。然后对含有"丢失""不关心"值和只有"不关心"值的两种不完备信息系统进行实例分析,最后从UCI数据集中选取5组不完备信息数据集来验证方法的有效性。 In this paper, attribute reduction of incomplete information system is studied. Firstly, optimistic and pessimistic generalized variable precision rough set models based on maximal consistent blocks are constructed.The relationship between the two models and their main properties are analyzed. After that β-lower optimistic(pessimistic) and β-upper distribution attribute reduction is defined, and the corresponding judgement theorem is given. Boolean method of attribute reduction is obtained, and it can keep the upper(lower) approximation distribution of the decision class unchanged. This method of constructing discernibility set between maximal consistent blocks reduces the size of the discernibility matrix, and the process of computing attribute reduction is simplified, which can effectively save computing time and storage space. Then two examples of incomplete information systems with"lost""dont care"values and only"dont care"values are employed to illustrate the proposed method. Finally, 5 sets of incomplete information data sets from UCI data set are used to validate its effectiveness.
作者 孙妍 米据生 冯涛 李磊军 梁美社 SUN Yan;MI Jusheng;FENG Tao;LI Leijun;LIANG Meishe(College of Mathematics and Information Science,Hebei Normal University,Shijiazhuang 050024,China;School of Science,Hebei University of Science and Technology,Shijiazhuang 050018,China;Department of Scientific Development and School-Business Cooperation,Shijiazhuang University of Applied Technology,Shijiazhuang 050081,China)
出处 《计算机科学与探索》 CSCD 北大核心 2020年第5期892-900,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61573127,61502144 河北省自然科学基金No.F2018205196 河北省高等学校自然科学基金No.QN2017095 河北省博士后择优资助科研项目No.B2016003013 河北省三三三人才工程培养经费No.A2017002112 河北师范大学博士基金项目No.L2017B19 河北省优秀专家出国培训项目。
关键词 极大相容块 变精度粗糙集模型 属性约简 不完备信息系统 maximal consistent block variable precision rough set model attribute reduction incomplete information system
  • 相关文献

参考文献4

二级参考文献18

  • 1Pawlak Z.Rough sets[J].International Journal of Information and Computer Science,1982,11:341-356.
  • 2Kryszkiewiez M.Rules in incomplete information systems[J].Information sciences,1999,113:271-292.
  • 3Stefanowski J.Incomplete information tables and rough classification[J].Computational Intelligence,2001,17(3):73-81.
  • 4Kryszkiewicz M.Rough set approach to incomplete information systems[J].Information sciences,1998,112:39-49.
  • 5Ziarko W.Variable precision rough set model[J].Journal of Computer and System Science,1993,46:39-59.
  • 6Beynon M.Reducts within the variable precision rough set model:A further investigation[J].European Journal of Operational Research,2001,124:592-605.
  • 7An Aijun,Shan Ning.Discovering rules for water demand prediction:An enhance rough set approach[J].Applications of Artificial Intelligenxe,1996,9(6):645-653.
  • 8王珏,王任,苗夺谦,郭萌,阮永韶,袁小红,赵凯.基于Rough Set理论的“数据浓缩”[J].计算机学报,1998,21(5):393-400. 被引量:239
  • 9黄兵,胡作进,周献中.优势模糊粗糙模型及其在审计风险评估中的应用[J].控制与决策,2009,24(6):899-902. 被引量:10
  • 10菅利荣,唐学文,刘思峰,方志耕.基于优势粗糙集的建设项目过程评价[J].系统管理学报,2009,18(5):577-582. 被引量:7

共引文献80

同被引文献44

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部