摘要
针对一类带有非线性扰动项的分数阶系统的鲁棒控制进行了研究。通过分数阶李雅普诺夫直接法得出一种新的状态反馈控制器,再利用线性矩阵不等式求出稳定条件下控制器参数的可行解,以保证分数阶闭环系统的稳定性同时得出使该系统稳定的充分条件。该控制器的优点在于不但运算简便,同时还具有较好的快速性及鲁棒性。仿真实例证明了该方法的实用性及可靠性。
This paper studies the robust control for a class of fractional order systems with nonlinear perturbation terms.A new state feedback controller was obtained by fractional order Lyapunov direct method;the feasible solution of the controller parameters under the condition of stability was obtained by using linear matrix inequality to ensure the stability of the fractional order closed-loop system and obtain sufficient conditions for the stability of the system.The advantage of the controller is that it is not only easy to operate,but also has better rapidity and robustness.The practicability and reliability of the method are proved by simulation examples.
作者
彭雨豪
黄姣茹
陈超波
Peng Yuhao;Huang Jiaoru;Chen Chaobo(School of Electronic Information Engineering,Xi an Technological University,Xi an 710021,Shaanxi,China)
出处
《计算机应用与软件》
北大核心
2020年第5期77-81,共5页
Computer Applications and Software
基金
国家重点研发计划项目(2016YFE0111900)
陕西省国际科技合作与交流项目(2017KW-009)
陕西省教育厅科研计划项目(16JF013)。
关键词
分数阶系统
线性矩阵不等式
状态反馈控制器
非线性扰动
Fractional order system
Linear matrix inequality
State feedback controller
Nonlinear perturbation