期刊文献+

复形的Cartan-Eilenberg Gorenstein AC-同调维数

Cartan-Eilenberg Gorenstein AC-cohomology dimension of complexes
原文传递
导出
摘要 研究了Cartan-Eilenberg Gorenstein AC-内射(投射)复形的若干等价刻画。证明了复形G是Cartan-Eilenberg Gorenstein AC-内射(投射)复形当且仅当G具有Cartan-Eilenberg强完全内射(L完全投射)分解。并且研究了复形的Cartan-Eilenberg Gorenstein AC-内射(投射)维数。 Some equivalent characterizations of Cartan-Eilenberg Gorenstein AC-injective(projective) complexes are studied. It is proved that a complex G is Cartan-Eilenberg Gorenstein injective(projective) if and only if G has a Cartan-Eilenberg strongly complete injective(L complete projective) resolution. Also, the Cartan-Eilenberg Gorenstein AC-injective(projective) dimension of complexes is studied.
作者 张丽英 杨刚 ZHANG Li-ying;YANG Gang(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2020年第4期77-84,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11761045) 甘肃省自然科学基金资助项目(17JR5RA091,18JR3RA113) 兰州交通大学“百名青年优秀人才培养计划”基金资助项目。
关键词 绝对clean模(复形) GORENSTEIN AC-内射(投射)模 Cartan-Eilenberg GORENSTEIN AC-内射(投射)复形 absolutely clean module(complex) Gorenstein AC-injective(projective) module Cartan-Eilenberg Gorenstein AC-injective(projective) complex
  • 相关文献

参考文献1

二级参考文献17

  • 1ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(1) : 611.
  • 2ENOCHS E E, JENDA O M G. Relative Homological Algebra [M]. Berlin: Walter de Gruyter, 2000.
  • 3CHRISTENSEN L W. Gorenstein Dimension I-M].Berlin: Springer, 2000.
  • 4HOLM H. Gorenstein homological dimensions[J]. J PureApplAlgebra, 2004, 189(1): 167.
  • 5DING N Q, LI Y L, MAO L X. Strongly Gorenstein flat modules [J]. J Aust Math Soc , 2009, 86(3): 323.
  • 6DING N Q, MAO L X. Gorenstein FP-injective and Gorenstein flat modules[J]. J Algebra Appl, 2008, 7(4>: 491.
  • 7GILLESPIE J. Model structures on modules over Ding-Chen ringsl-J3. Homology, Homotopy Appl, 2010, 12(1): 61.
  • 8HUANG C H, HUANG Z Y. Gorenstein syzygy modules[J]. J Algebra, 2010, 324(12) : 3408.
  • 9GENG Y X, DING N Q. -Gorenstein modulesl-J. JAlgebra, 2011, 325(1): 132.
  • 10YANG G, LIU Z K, LIANG L. Ding projective and Ding injective modules [J]. Algebra Colloq, 2013, 20(4): 601.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部