期刊文献+

一种基于深度神经网络的句法要素识别方法 被引量:6

A syntactic element recognition method based on deep neural network
原文传递
导出
摘要 为改进传统特征方法很难获取中文句子中结构信息的问题,提出一种基于深度神经网络的句法要素识别模型。采用Bi-LSTM网络从原始数据中自动抽取句子中的结构信息和语义信息,利用Attention机制自动计算抽象语义特征的分类权重,通过CRF层对输出标签进行约束,输出最优的标注序列。经过对比验证,该模型能有效识别句子中的句法要素,在标注数据集上F1达到84.85%。 It was difficult to obtain structural information in Chinese sentences by the traditional feature method. To solve the problem, according to characteristics of Chinese sentence, a Bi-LSTM-Attention-CRF model was proposed based on deep neural network. A Bi-LSTM network was used to automatically extract structural information and semantic information from raw input sentences. Attention mechanism was adopted to weight abstract semantic features for classification. An optimized label sequence was output through the CRF layer. Comparing with other methods, our model could effectively identify syntactic elements in sentences. The performance reached to 84.85% in F1 score in the evaluation data sets.
作者 陈艳平 冯丽 秦永彬 黄瑞章 CHEN Yanping;FENG Li;QIN Yongbin;HUANG Ruizhang(School of Computer Science and Technology,Guizhou University,Guiyang 550025,Guizhou,China;Data Fusion and Analysis Laboratory(Guizhou University),Guiyang 550025,Guizhou,China;Guizhou Intelligent Human-Computer Interaction Engineering Technology Research Center,Guiyang 550025,Guizhou,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2020年第2期44-49,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金联合基金重点项目(U1836205) 国家自然科学基金重大研究计划项目(91746116) 贵州省重大应用基础研究项目(黔科合JZ字[2014]2001) 贵州省科技重大专项计划(黔科合重大专项字[2017]3002) 贵州省自然科学基金(黔科合基础[2018]1035)。
关键词 句法要素 信息抽取 深度神经网络 syntactic elements information extraction deep neural network
  • 相关文献

参考文献7

二级参考文献36

  • 1张宁生.教学实践中耳聋儿童学习语言的某些特点[J].心理学报,1980,12(4):390-396. 被引量:8
  • 2张衡.马尔科夫链的一个应用[J].长春光学精密机械学院学报,1994,17(3):44-49. 被引量:11
  • 3耿建军,焦德杰.基于马尔科夫链的统计分析的教学评估方法[J].聊城大学学报(自然科学版),2006,19(4):97-100. 被引量:7
  • 4刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 5Nianwen Xue.Building a Large-Scale Annotated Chinese Corpus[C] //Proceedings of the 19th international conference on Computational linguistics.2002:1-8.
  • 6Nianwen Xue,Martha Palmer.Annotating the propositions in the Penn Chinese Treebank[C] //Proceedings of the second SIGHAN workshop on Chinese language processing.2003:47-54.
  • 7Honglin Sun,Daniel Jurafsky.Shallow semantic parsing of Chinese[C] //Proceedings of NAACL-HLT.2004.
  • 8Nianwen Xue.Labeling Chinese predicates with semantic roles[J] .Computational Linguistics,2008,34(2):225-255.
  • 9Weiwei Sun,Zhifang Sui.Chinese function tag labeling[C] //Proceedings of the 23rd Pacific Asia Conference on Language,Information and Computation.2009.
  • 10Weiwei Sun,Zhifang Sui,Meng Wang and Xin Wang.Chinese semantic role labeling with shallow parsing[C] //Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing.2009:1475-1483.

共引文献40

同被引文献68

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部