期刊文献+

基于RISC-V的卷积神经网络处理器设计与实现 被引量:5

Design and implementation of convolutional neural network processor based on RISC-V instruction set
下载PDF
导出
摘要 针对卷积神经网络对于运算资源需求的不断增长,和传统的硬件卷积加速方案在功耗、面积敏感的边缘计算领域难以应用的问题,设计并实现了一个低功耗嵌入式卷积神经网络加速处理器.目标处理器基于RISC-V指令集架构,内核扩展4条自定义神经网络指令,并在硬件层面实现加速处理.该卷积神经网络处理器最大程度的复用了原RISC-V的数据通路和功能模块,减小了额外的功耗和芯片面积等资源开销.目标处理器通过RISC-V官方标准测试集验证,并对MNIST手写数据集进行识别测试,正确率达到97.23%.在TSMC 40nm标准数字工艺下,目标处理器面积仅为0.34 mm^(2,),动态功耗仅为11.1μw/MHz,与同期处理器相比,面积和功耗方面均具有一定优势. A low power embedded convolutional neural network acceleration processor is designed and implemented in response to the growing demand for computational resources in convolutional neural networks and the difficulty of applying traditional hardware convolution acceleration schemes in power-and area-sensitive edge computation applications.The target processor based on the RISC-V instruction set architecture,extend four custom neural network instructions,and accelerates the processing on the hardware architecture.The convolutional neural network processor maximizes the reuse of the original RISC-V data path and functional modules,reducing additional resourceoverhead.The target processor is verified by the RISC-V official standard test set,and the MNIST handwritten data set is identified and tested,with a correct rate of 97.23%.The target processor occupies 0.34 mm^2 area and consume 11.1μw/MHz dynamic power using TSMC 40 nm technology.Compared with the correlation processor,it has certain advantages in area and power consumption.
作者 傅思扬 陈华 郁发新 FU Si-yang;CHEN Hua;YU Fa-xin(college of Aeronautics and Astronautics,Zhejiang University,Hangzhou,310058,China)
出处 《微电子学与计算机》 北大核心 2020年第4期49-54,共6页 Microelectronics & Computer
基金 国家自然科学基金(61604128) 中央高校基本科研业务费专项项目(2017QN81002)。
关键词 处理器 卷积神经网络 定制指令集 RISC-V processor convolutional neural network custom instruction set RISC-V
  • 相关文献

参考文献5

二级参考文献22

  • 1潘朝霞,王毅.ARM处理器中ARM和Thumb状态的切换[J].微计算机信息,2005,21(2):95-96. 被引量:2
  • 2Thumb-2:Cortex的基本元素[J].电子设计技术 EDN CHINA,2005,12(6):124-124. 被引量:1
  • 3LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learningapplied to document recognition[J].Proceedings ofthe IEEE,1998,86(11):2278-2324.
  • 4Simard P Y,Steinkraus D,Platt J C.Best practices forconvolutional neural networks applied to visual documentanalysis[C]//Proceedings of the 7th InternationalConference on Document Analysis and Recognition,2003:958-962.
  • 5Chellapilla K,Puri S,Simard P.High performance convolutionalneural networks for document processing[C]//10th International Workshop on Frontiers in HandwritingRecognition,2006.
  • 6Chellapilla K,Shilman M,Simard P.Optimally combininga cascade of classifiers[C]//Electronic Imaging,2006:207-214.
  • 7Garcia C,Delakis M.Convolutional face finder:a neuralarchitecture for fast and robust face detection[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2004,26(11):1408-1423.
  • 8Frome A,Cheung G,Abdulkader A,et al.Large-scale privacyprotection in google street view[C]//IEEE InternationalConference on Computer Vision,2009:2373-2380.
  • 9Bouvrie J.Notes on convolutional neural networks[Z].2006.
  • 10Sankaradas M,Jakkula V,Cadambi S,et al.A massivelyparallel coprocessor for convolutional neural networks[C]//20th IEEE International Conference on Application-specificSystems,Architectures and Processors,2009:53-60.

共引文献65

同被引文献26

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部