期刊文献+

结合全局和局部稀疏表示的SAR图像目标识别方法 被引量:10

Target recognition of SAR images based on combinationof global and local sparse representations
下载PDF
导出
摘要 提出结合全局和局部稀疏表示的合成孔径雷达(SAR)目标识别方法。基于全局字典的稀疏表示可以比较各个训练类别对于测试样本的相对表征能力。而基于局部字典的稀疏表示则体现各个类别对于测试样本的绝对描述能力。因此,两者的结果具有良好的互补性,可以为正确决策提供更充分的信息。采用D-S (Dempster-Shafer)证据理论对两者的决策矢量(即重构误差)进行决策融合从而得到更为稳健的识别结果。基于MSTAR数据集进行了目标识别实验并与其他SAR目标识别方法进行了充分对比,实验结果证明了提出方法的有效性。 This paper proposes a synthetic aperture radar(SAR) target recognition method based on combination of global and local representations. Sparse representation over the global dictionary could effectively compares the relative description capabilities of different classes for the test sample. However, local dictionary-based sparse representation reflects the absolute description ability of each category on the test sample. Therefore, the two representations could complement each other to provide more information for correct decisions. The decision value vectors(i.e., reconstruction errors) from the global and local representations are fused by Dempster-Shafer(D-S) evidence theory for robust target recognition. Experiments are conducted on public moving and stationary target acquisition and recognition(MSTAR) dataset to be compared with other SAR target recognition methods. The experimental results show the effectiveness of the proposed method.
作者 李亚娟 Li Yajuan(Electronic Information Technology Research Center,Ankang University,Ankang 725000,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第2期165-171,共7页 Journal of Electronic Measurement and Instrumentation
基金 陕西省教育厅项目(11JK0648)资助。
关键词 合成孔径雷达 目标识别 全局字典 局部字典 D-S证据理论 synthetic aperture radar target recognition global dictionary local dictionary D-S evidence theory
  • 相关文献

参考文献8

二级参考文献62

  • 1吴敏,张磊,邢孟道,段佳,徐刚.基于分布式压缩感知的全极化雷达超分辨成像[J].电波科学学报,2015,30(1):29-36. 被引量:4
  • 2韩萍,吴仁彪,王兆华.基于KFD准则的SAR目标特征提取与识别[J].现代雷达,2004,26(7):27-30. 被引量:11
  • 3徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 4Karhunen J, Joutsensalo J. Generalizations of principal component analysis, optimization problems and neural net- works [ J ]. Neural Networks, 1995, S (4) : 549-562.
  • 5Comon P. Independent component analysis: A new con- cept? [J]. Signal Processing, 1994,36(3) :287-314.
  • 6Belhumeur P N, Hespanha J P, Kriegman J K. Eigenfaces vs fisherfaces: recognition using class specific linear pro- jection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19:711-720.
  • 7Donoho D L. Compressed Sensing [ J ]. IEEE Transac- tions on Information Theory,2006, 52(4) :1289-1306.
  • 8Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[ J]. Neural Com- putation, 1998,10 (5) : 1299-1319.
  • 9Wright J, Yang A Y, Ganesh A, etc. Robust Face Recog- nition via Sparse Representation [ J ]. 2009, 31 ( 2 ) : 210-227.
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient Pro- jection for Sparse Reconstruction: Application to Com- pressed Sensing and Other Inverse Problems [ J ]. IEEE journals of selected topics in signal processing, 2007,1 (4) :586-597.

共引文献150

同被引文献102

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部