期刊文献+

径向声子晶体柱壳在径向波带隙中的动应力研究 被引量:1

RESEARCH ON DYNAMIC STRESS OF CYLINDRICAL SHELL OF RADICAL PHONONIC CRYSTALS IN RADIAL WAVE BAND GAP
下载PDF
导出
摘要 构造由两种匀质材料交替分布的半无限周期结构的径向声子晶体柱壳模型,针对径向波在其中由内向外传播情况进行了理论分析。采用数值分析的方法讨论分析了有限周期径向声子晶体柱壳表面局域态出现的规律,同时借助力学状态向量总传递矩阵特征值法获得能带结构进而对数值结果进行了验证。最后,详细分析了有限周期径向声子晶体柱壳结构内部应力大小及分布情况。研究表明,径向声子晶体柱壳存在弹性波带隙,表面局域态出现与否与自由表面的波速有关;而径向声子晶体结构应力集中出现与否与加载面的波速有关。 A semi-infinite periodic model of cylindrical shell of radial phononic crystals(CS-RPCs)is constructed by alternate distribution of two homogeneous materials.A theoretical analysis of the propagation of radial waves from inside to outside is performed.The method of numerical analysis is used to discuss and analyze the appearance regularity of the surface localized modes with a finite period CS-RPCs.At the same time,the energy band structure is obtained by the eigenvalue method of the mechanical state vector total transfer matrix and then the numerical results are verified.Finally,the internal stress magnitude and distribution of the finite period CS-RPCs structure are analyzed in detail.The results show that the elastic band gap exists in the CS-RPCs,and the appearance of the surface localized modes is related to the wave velocity of the free surface.The stress concentration of radial phononic crystal structure is related to the wave velocity of loading surface.
作者 王兴国 舒海生 张靓 WANG XingGuo;SHU HaiSheng;ZHANG Liang(College of Mechanical and Electrical Engineering,Qiqihar University,Qiqihar 161006,China;College of Mechanical and Electrical Engineering,Harbin Engineering University,Harbin 150001,China;Anyang Institute of Technology,Anyang 455000,China)
出处 《机械强度》 CAS CSCD 北大核心 2020年第2期337-342,共6页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51375105) 黑龙江省2018年度教育厅基本科研业务(135309485)资助。
关键词 径向声子晶体 表面局域态 波速 应力集中 Radial phononic crystal Surface localized modes Wave velocity Stress concentration
  • 相关文献

参考文献3

二级参考文献42

  • 1王刚,温激鸿,刘耀宗,郁殿龙,赵宏刚.一维粘弹材料周期结构的振动带隙研究[J].机械工程学报,2004,40(7):47-50. 被引量:18
  • 2[1]Hodges C H, Woodhouse J. J. Acoust. Soc., 1983,Am.74:894.
  • 3[2]Baluni V, Willemsen. Phys. Rev., 1985, A31:3358.
  • 4[3]Matsuda H, Ishii K. Prog. Theor. Phys. Suppl.,1970, 45:56.
  • 5[4]Soukoulis C M, Datta S, Economou E N. Phys. Rev.,1994, B49:3800.
  • 6[5]McGurn A R, Christensen K T, Mueller F M, et al.Phys. Rev., 1993, B47:13120.
  • 7[6]Freilikher V D, Liansky B A, Yurkevich I V. et al.Phys. Rev., 1995, E51:6301.
  • 8[7]Ye Z, Alvarez A. Phys. Rev. Lett., 1998, 80:3503.
  • 9[8]Ye Z, Hsu H, Hoskinson E, Alvarez A. Chin. J. Phys.,1999, 37:343.
  • 10[9]Dalichaouch R, Armstrong J P, Schultz S, et al. Nature, 1991, 354:53.

共引文献20

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部