期刊文献+

一道有趣的平面几何小题

原文传递
导出
摘要 如图1,在四边形ABCD中,∠ABC=∠D=90°,AB=BC,BE⊥AD,垂足为点E,则结论1 BE=DE.证明:过点C作CG⊥BE于G,如图2,则有矩形CDEG,CG=DE.易证△BAE≌△CBG,所以BE=CG=DE.结论2(1)BE=AE+CD;(2)2BE=AD+CD.证明:(1)由矩形CDEG得GE=CD.由△BAE≌△CBG得AE=BG,所以BE=BG+GE=AE+CD.
作者 岳昌庆
出处 《中学数学杂志》 2020年第2期48-49,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部