摘要
针对目前对水下目标磁异常信号低信噪比检测能力较差的问题,提出奇异值分解随机共振(SVD-RS)方法。该方法基于磁偶极子仿真水下目标磁偶极子信号,信号经过奇异值分解选择最优子信号,随后将子信号通过随机共振系统,并构建检验统计量,实现对水下目标磁异常信号的检测。仿真结果表明,通过奇异值分解的方法,能够将信号信噪比提高6 dB,使用奇异值分解随机共振检测方法,能够在输入信噪比为-12 dB时,对水下目标磁异常信号进行有效检测。
To solve the problem of detecting the underwater target magnetic anomaly signal from the strong geomagnetic field noise,a singular value decomposition-single resonance(SVD-RS)method was proposed.Firstly,the input signal was established under different noise intensity by the magnetic dipole model,and the most sub signal was chosen by SVD method.SVD method had ideal de-correlation characteristics and could extract useful signals and characteristic information under strong noise.The results showed that this method could improve the signal to noise ratio by about 6 dB.Then the sub-signal was passed through the stochastic resonance system,when the test statistic was constructed to detect the magnetic abnormal signal of the underwater target.The results showed that the SVD-RS detection method could effectively detect the magnetic anomaly of underwater targets.
作者
李启飞
吴芳
韩蕾蕾
范赵鹏
李沛宗
LI Qifei;WU Fang;HAN Leilei;FAN Zhaopeng;LI Peizong(Naval Aeronautics University,Yantai 254001,China;Unit 91550 of PLA,Dalian 116000,China;Unit 91001 of PLA,Beijing 100000,China)
出处
《探测与控制学报》
CSCD
北大核心
2020年第2期24-29,共6页
Journal of Detection & Control
基金
国家自然科学基金项目资助(61971424)。
关键词
水下目标
磁偶极子
奇异值分解
随机共振
磁异常信号检测
underwater target
magnetic dipole
singular value decomposition
stochastic resonance
magnetic anomaly signal detection