期刊文献+

特征点检测DoG并行算法 被引量:6

Feature Point Detection DoG Parallel Algorithm
下载PDF
导出
摘要 特征点检测被广泛应用于目标识别、跟踪及三维重建等领域。针对三维重建算法中特征点检测算法运算量大、耗时多的特点,对高斯差分(Difference-of-Gaussian,DoG)算法进行改进,提出特征点检测DoG并行算法。基于OpenMP的多核CPU、CUDA及OpenCL架构的GPU并行环境,设计实现DoG特征点检测并行算法。对hallFeng图像集在不同实验平台进行对比实验,实验结果表明,基于OpenMP的多核CPU的并行算法表现出良好的多核可扩展性,基于CUDA及OpenCL架构的GPU并行算法可获得较高加速比,最高加速比可达96.79,具有显著的加速效果,且具有良好的数据和平台可扩展性。 Feature point detection is widely used in target recognition,tracking and 3 D reconstruction.The computation of the feature point detection algorithm for big data problem is time-consuming and computation-intensive.In this paper,the parallel DoG(Difference-of-Gaussian)feature point detection algorithms are proposed.In the multi-CPU programming model based on OpenMP and the GPU parallel environment based on CUDA and OpenCL architecture,the parallel algorithms of the DoG feature point detection algorithm are designed and implemented.The comparison experiment of hallFeng image set is completed on different platforms,the experimental results show that the multi-CPU feature point detection algorithm based on OpenMP shows good multi-core scalability.The parallel GPU algorithm based on CUDA and OpenCL architecture can achieve the high speedup ratio,up to 96.79,with significant speedup effect,and which has good data and platform scalability.
作者 朱超 吴素萍 ZHU Chao;WU Suping(School of Information Engineering,Ningxia University,Yinchuan 750021,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第10期36-43,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61662059)。
关键词 图形处理器(GPU) 多核CPU 高斯差分(DoG) 特征点检测 并行算法 Graphics Processing Unit(GPU) Multi-CPU Difference-of-Gaussian(DoG) feature point detection parallel algorithm
  • 相关文献

参考文献8

二级参考文献60

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2刘雪梅,庄晋林,张树生,李炳胜.利用自适应模糊椭球聚类实现点云分区[J].计算机工程与应用,2007,43(15):33-34. 被引量:2
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072
  • 4Dalai N. Triggs B. Histogram of oriented gradients for humanI>tection[C]//CVPR. 2005 :886-893.
  • 5Belongie S, Malik J,Puzicha J. Shape Matching and object recog-nition Using Shape Contexts[J]. IEEE Trans, on Pattern Analy-sis and Machine Intelligence, 2002,24C4) : 509-522.
  • 6Shi J , Thomasi C. Good feature to track[C] // IEEE Conferenceon Computer Vision and pattern Recognition. 1994:593-560.
  • 7Lucas B. Kanade T. An iterative image registration techniquewith an application to stereo vision[C] //' Proceedings of the In-ternational Joint Conference on Artificial Intelligence, 1982:674-679.
  • 8Strengert M,Kraus M,Ertl T. Pyramid Methods in GPU-BasedImage Processing[C]//Proceeding of Vision. Modeling.and Vi-sualization 2006. 2006:169-176.
  • 9Dollar P, Appel R.Belongie S. F'ast Feature pyramids for objectdetection[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,2014,36(8) : 1532-1545.
  • 10Nvidia. NVIDIA CUDA A Programming Guide version 4. 0[EB/OIJ. http://www. nvidia. com/object/cuda-cn.

共引文献38

同被引文献44

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部