摘要
[目的/意义]拓展大数据挖掘技术在图书馆学习支持服务中的应用,提高智慧环境下图书馆学习支持服务效果。[方法/过程]梳理图书馆学习支持服务的研究现状及其在智慧环境下的特征,从学习行为、知识关联和学习情境三方面建立学习支持服务的大数据挖掘模型,分析数据来源和大数据挖掘路径。[结果/结论]在大数据挖掘模型的基础上构建层次化图书馆学习支持服务框架,从智能感知、大数据分析、核心业务和智慧终端四个层次,为智慧环境下图书馆学习支持服务的多种应用情境研究提供依据和参考。
[Purpose/significance] The paper is to expand the application of big data mining technology in library learning support services, and improve the effectiveness of library learning support services in a smart environment. [Method/process]The paper reviews the research status of library learning support service and its characteristics under smart environment, establishes a big data mining model of learning support service from three aspects: learning behavior, knowledge connection and learning situation, and analyzes its data source and big data analysis path. [Result/conclusion] Based on the big data mining model, the paper constructs a hierarchical library learning support service framework, which provides the basis and reference for the study of library learning support services in various application scenarios from four levels: intelligent perception, big data analysis, core business and smart terminals.
作者
范云欢
Fan Yunhuan(Shanghai Customs College Library,Shanghai 201204)
出处
《情报探索》
2020年第5期40-45,共6页
Information Research
关键词
智慧环境
学习支持服务
高校图书馆
大数据挖掘
smart environment
learning support service
university library
big data mining