期刊文献+

基于三元组排序局部性的SOCFS改进算法

Improved SOCFS Algorithm Based on Triplet Ordinal Locality
下载PDF
导出
摘要 特征选择是一种常用的机器学习降维方法,然而传统非监督特征选择算法在保持数据样本维度的局部结构时,却忽略了排序局部性对特征选择的影响。利用数据的三元组局部结构,构建数据之间的排序关系并在特征选择过程中进行局部性保持,提出基于三元组排序局部性的同时正交基聚类特征选择(SOCFS)改进算法,选择具有局部结构保持性且判别区分度高的特征。实验结果表明,与传统非监督特征选择算法相比,SOCFS改进算法聚类效果更好、收敛速度更快。 Features selection is commonly used in dimensionality reduction of machine learning,but existing unsupervised feature selection algorithms often ignore the influence of ordinal locality on feature selection while preserving the local structure of dimensionality of data samples.To address the problem,this paper proposes an improved Simultaneous Orthogonal Basis Clustering Feature Selection(SOCFS)algorithm based on triplet ordinal locality.The algorithm uses the local structure of triplets in data to construct ordinal relationships between data,and preserves the locality of such relationships in feature selection.On this basis,the features that can preserve local structure and have high discrimination for judgment are selected.Experimental results show that the improved algorithm outperforms traditional unsupervised feature selection algorithms in terms of clustering performance and convergence speed.
作者 吴昌明 赵兴涛 柳可鑫 WU Changming;ZHAO Xingtao;LIU Kexin(College of Information Technology and Cyber Security,People’s Public Security University of China,Beijing 102623,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第5期47-53,共7页 Computer Engineering
基金 国家重点研发计划(2017YFC0820606) 国家自然科学基金(61771072) 公安部科技强警基础工作专项(2014GABJC026)。
关键词 非监督特征选择 三元组 排序局部性 聚类 收敛性 unsupervised feature selection triplet ordinal locality clustering convergence
  • 相关文献

参考文献4

二级参考文献11

  • 1Zhenhua Li, Zhongliang Jing, Shaoyuan Sun. Pixel-clarity-based multifocus image fusion[J]. Chin. Opt. Lett., 2004,2(2): 82-85.
  • 2M. Novak, R. Mammone. Use of non-negative matrix factorization for language model adaptation in a lecture transcription task [C]. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake, 2001. 541-544.
  • 3D. D. Lee, H. S. Seung. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 4111 (6755) :788-791.
  • 4Tao Feng, Stan Z. Li, Heung-Yeung Shum et al.. Local non-negative matrix factorization as a visual representation[C]. In:Proc. 2^nd International Conference on Development and Learning, Cambridge, 2002. 1-6.
  • 5D. Guillamet, M. Bressan, J. Vitria. A weighted non-negative matrix factorization for local representations [C]. In: Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vl, Kauai, Hl, 2001. 942-947.
  • 6D. D. Lee, H. S. Seung. Algorithms for non-negative matrix factorization [C]. In: Advances in Neural Information Processing Systems 13, Denver, 2000. 556-562.
  • 7D. Guillamet, J. Vitria. Color Histogram Classification Using NMF[EB/OL]. http: //citeseer. nj. nec. com/546491. html,2003.
  • 8Oliver rockinger, image fusion toolbox [EB/OL], http: //www. metapix. de/toolbox. htm, 2003.
  • 9谢娟英,屈亚楠,王明钊.基于密度峰值的无监督特征选择算法[J].南京大学学报(自然科学版),2016,52(4):735-745. 被引量:4
  • 10曹冬寅,王琼,张兴敢.基于稀疏重构残差和随机森林的集成分类算法[J].南京大学学报(自然科学版),2016,52(6):1127-1132. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部