期刊文献+

多粒度相关滤波视频跟踪方法

Video Tracking Method Using Multi-granularity Correlation Filters
下载PDF
导出
摘要 视频跟踪是计算机视觉领域的一个重要研究方向,跟踪算法往往通过融合多种类型的特征来实现较高的性能,但其中多数算法未能充分利用多个特征之间的粒度关系。为此,提出一种基于粒计算思维的多粒度相关滤波视频跟踪算法。对视频图像的特征进行划分,构造出基于各个粒度的相关滤波器并进行独立跟踪,在每帧中根据稳健性评估得分的高低选择最优结果。在此基础上,汇总各帧下的跟踪结果并作为最终输出。在OTB-2013和OTB-20152个公开数据集上进行实验,结果表明,与视频跟踪算法DCFNet相比,该算法在空间鲁棒性与时间鲁棒性上的精准度较高,特别是在快速运动、平面内外旋转和尺度变化的情况下,其具有良好的视频处理能力。 Video tracking is an important direction in research of computer vision.Many tracking algorithms achieve high performance by integrating multiple types of features,but most of them fail to fully exploit the granularity relationship between multiple features.To address the problem,this paper proposes a multi-granularity video tracking algorithm using multi-granulairty correlation filters based on the concept of granular computing.First,the characteristics of video images are divided and the correlation filters based on different granularities are constructed.Then,the correlation filters implement tracking independently,and select the optimal result based on the score of robustness evaluation in each frame.On this basis,the tracking results of each frame are integrated as the final result.Experiments on two open datasets,OTB-2013 and OTB-2015,show that compared with the video tracking algorithm DCFNet,the proposed algorithm has higher accuracy in space and time robustness.It has excellent video tracking performance especially in the case of fast motion,in/out-of-plane rotation and scale change.
作者 沈泽君 丁飞飞 杨文元 SHEN Zejun;DING Feifei;YANG Wenyuan(Lab of Granular Computing,Minnan Normal University,Zhangzhou,Fujian 363000,China;School of Computer Science,Minnan Normal University,Zhangzhou,Fujian 363000,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第5期274-281,共8页 Computer Engineering
基金 国家自然科学基金青年基金项目(61703196) 福建省自然科学基金(2018J01549)。
关键词 计算机视觉 目标跟踪 粒度关系 相关滤波 鲁棒性评估 computer vision target tracking granularity relationship correlation filters robustness assessment
  • 相关文献

参考文献7

二级参考文献22

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部